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Abstract

We introduce new systems that we call odomutants, built by distorting the orbits of

an odometer. We use these transformations for �exibility results in quantitative orbit

equivalence.

It follows from the work of Kerr and Li that if the cocycles of an orbit equivalence

are log-integrable, the entropy is preserved. Although entropy is also an invariant of even

Kakutani equivalence, we prove that this relation and L 1{2 orbit equivalence are not the

same, using a non-loosely Bernoulli system of Feldman which is an odomutant.

We also show that Kerr and Li's result on preservation of entropy is optimal, namely we

�nd odomutants of all positive entropies orbit equivalent to an odometer, with almost log-
integrable cocycles. We actually build a strong orbit equivalence between uniquely ergodic

Cantor minimal homeomorphisms, so our result is a re�nement of a famous theorem of

Boyle and Handelman.

We �nally prove that Belinskaya's theorem is optimal for all the odometers, namely

for every odometer, we �nd a odomutant which is almost-integrably orbit equivalent to

it but not �ip-conjugate. This yields an extension of a theorem by Carderi, Joseph, Le

Maître and Tessera.
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1 Introduction

Two ergodic probability measure-preserving bijections S and T on a standard atomless prob-
ability space pX,A, µq, are orbit equivalent if S and some system Ψ�1TΨ conjugate to T have
the same orbits up to measure zero. The isomorphism Ψ is called an orbit equivalence between
T and S.

A stunning theorem of Dye [Dye59] states that all ergodic measure-preserving bijections of
a standard probability space are orbit equivalent. To get a more interesting theory, quantitative
orbit equivalence proposes to add quantitative restrictions on the cocycles associated to orbit
equivalence Ψ. These are integer-valued functions cS and cT de�ned by

Sx � Ψ�1T cSpxqΨpxq and Tx � ΨScT pxqΨ�1pxq,
they are well-de�ned in the ergodic case. In this paper, we consider two quantitative forms
of orbit equivalence: Shannon orbit equivalence and φ-integrably orbit equivalence, for maps
φ : R� Ñ R�. Shannon orbit equivalence requires that there exists an orbit equivalence whose
cocycles are Shannon, meaning that the partitions associated to cS and cT are both of �nite
entropy. For φ-integrable orbit equivalence, we ask that both integrals»

X
φp|cSpxq|qdµpxq and

»
X
φp|cT pxq|qdµpxq

are �nite.
In this paper, when φpxq � xp, we are asking that both cocycles cS and cT are in Lp,

and thus call it an Lp orbit equivalence. Also when cS and cT are in Lq for every q   p, we
say that we have an L p orbit equivalence. The notion of Lp orbit equivalence can be traced
back to the work of Bader, Furman and Sauer [BFS13] in the more general context of measure
equivalence, while Shannon orbit equivalence was de�ned by Kerr and Li. Finally, φ-integrable
orbit equivalence was �rst de�ned and studied by [DKLMT22].
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The main goal is to understand which probability measure-preserving bijections are φ-
integrably orbit equivalent or Shannon orbit equivalent. However the construction in the
proof of Dye's theorem is not explicit and does not give any quantitative information on the
cocycles. Then a more tractable question is the preservation of dynamical properties un-
der these forms of quantitative orbit equivalence. In order to get �exibility results and then
partially answer these questions, we introduce in this paper an explicit construction of orbit
equivalence between odometers and systems with completely di�erent properties, that we call
odomutants.

In recent years, odometers have been a central class of systems for explicit constructions,
thanks to their combinatorial structure. For example, Kerr and Li [KL24] prove that every
odometer is Shannon orbit equivalent to the universal odometer, providing concrete examples
of Shannon orbit equivalent systems which are non conjugate. This result was generalized: we
show in [Cor25] that many rank-one systems (including the odometers and many irrational
rotations) with various spectral and mixing properties are φ-integrably orbit equivalent to the
universal odometer, with φ : R� Ñ R� satisfying φpxq �

xÑ�8
opx1{3q. Finally, in order to

show that the main result of [DKLMT22, Theorem 1.1] is optimal in many examples, Delabie,
Koivisto, Le Maître and Tessera provide concrete orbit equivalences between group actions1

built with Følner tilings (see [DKLMT22, Section 6]). It turns out that we get a Zk-odometer
in the case of the group Zk, thus highlighting how useful the combinatorial structures of such
systems are.

In our paper, the construction is also based on odometers, it is motivated by a construction
by Feldman [Fel76]. The odomutants associated to the same odometer are explicitely built
from successive distortions of its orbits, have the same point spectrum (Theorem 3.13) but they
can be completely di�erent. They provide �exibility and optimality results: Theorems A, B, C
and D that we explain with more details in the following paragraphs.

A theorem of preservation of entropy proved by Kerr and Li. We may wonder
whether Shannon or φ-integrable orbit equivalence are trivial or not. Kerr and Li proved that
a well-known invariant of conjugacy, the measure-theoretic entropy, is an invariant of Shannon
orbit equivalence.

Theorem ([KL24, Theorem A]). Entropy is preserved under Shannon orbit equivalence.

A connection between φ-integrable orbit equivalence and Shannon orbit equivalence is
given by the following statement which is a consequence of [CJLMT23, Lemma 3.15].

Lemma. Let f : X Ñ Z be a measurable map. If it is log-integrable, then it is Shannon.

As a consequence, φ-integrable orbit equivalence implies Shannon orbit equivalence when
φ is greater than log and, combined with Kerr and Li's theorem, we get the following result.

Theorem. Let φ : R� Ñ R� be a map satisfying log t �
tÑ�8

Opφptqq. Then entropy is pre-

served under φ-integrable orbit equivalence.

1We do not give any de�nition in this setting, as the paper is only about probability measure-preserving
bijections S, which can be seen as Z-actions via pn, xq P Z�X ÞÑ Snx.
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On non-preservation of even Kakutani equivalence. Entropy is also preserved under
even Kakutani equivalence (see Section 2.4). We may wonder whether there is a connection
between this equivalence relation and Shannon orbit equivalence or φ-integrable orbit equiv-
alence for a map φ : R� Ñ R� satisfying log t �

tÑ�8
Opφptqq. Note that these quantitative

forms of orbit equivalence are not equivalence relations a priori. In the result below, L 1{2

orbit equivalence means that the cocycles are in Lp for every p   1
2 .

Theorem A (See Theorem 4.1). There exists an ergodic probability measure-preserving bijec-

tion T which is L 1{2 orbit equivalent (in particular Shannon orbit equivalent) to the dyadic

odometer but not evenly Kakutani equivalent to it.

We actually prove that L 1{2 orbit equivalence does not preserve loose Bernoullicity2, so
it does not imply Kakutani equivalence (weaker than even Kakutani equivalence). In [Fel76],
Feldman builds a zero-entropy ergodic system which is not loosely Bernoulli. This system,
denoted by T , is actually an odomutant built from the dyadic odometer S (this is the �rst
example of odomutant and the starting point of our work). We prove that S and T are L 1{2

orbit equivalent and Theorem A follows from the fact that every odometer is loosely Bernoulli.

Remark 1.1. In [Fel76], Feldman did not consider the question of the point spectrum of his
non loosely Bernoulli system. As a corollary of Theorem 3.13, we get that it has the same
point spectrum as the dyadic odometer.

Question 1.2. Does there exists a sublinear map φ : R� Ñ R� such that φ-integrable orbit
equivalence implies Kakutani equivalence or even Kakutani equivalence? Such a map would
be at least x ÞÑ x1{2. We may also wonder whether loose Bernoullicity is preserved under
φ-integrable orbit equivalence for some sublinear map φ. Note that the case of a linear map
φ is straightforward, as a consequence of Belinskaya's theorem.

Optimality result for the preservation of entropy. As stated above, φ-integrable orbit
equivalence preserves entropy when the map φ satis�es log t �

tÑ�8
Opφptqq. Theorem B shows

that this result is almost sharp.

Theorem B. Let pX,µq be a standard atomless probability space, let α be either a positive real

number or �8, and let S P AutpX,µq be an odometer whose associated supernatural number±
pPΠ p

kp satis�es the following property: there exists a prime number p� such that kp� � �8.

Then there exists a probability measure-preserving transformation T P AutpX,µq such that

1. hµpT q � α;

2. there exists an orbit equivalence between S and T , which is φm-integrable for all integers
m ¥ 0,

where φm denotes the map tÑ log t

logp�mq t
and logp�mq the composition log � . . . � log (m times).

The notion of supernatural number associated to an odometer is de�ned after De�ni-
tion 2.12, it totally describes its conjugacy class. Examples of odometers S to which this
theorem applies are the dyadic odometer, more generally the p-odometer for every prime

2Loosely Bernoulli systems form a class of ergodic systems, which is closed under Kakutani equivalence (see
Section 2.4).
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number p, or the universal odometer. In our proof, the transformation T is an odomutant
associated to S, we now explain how to build such a system.

Theorem B is actually a corollary of Theorem C which is stated in a topological framework.
Indeed, to prove this corollary, the main idea was to use topological entropy instead, simpler
than measure-theoretic entropy in this context, and connected to it via the variational princi-
ple. Moreover, for the topological entropy to be well-de�ned, we have to consider odomutants
that can be extended as homeomorphisms on the Cantor set. We notice that we build a strong
orbit equivalence, namely an orbit equivalence between homeomorphisms on the Cantor set
such that the equality of the orbits holds at every point of the space (and not up to measure
zero), and whose associated cocycles each have at most one point of discontinuity.

Theorem C (See Theorem 5.1). Let α be either a positive real number or �8. Let S be

an odometer whose associated supernatural number
±
pPΠ p

kp satis�es the following property:

there exists a prime number p� such that kp� � �8. Then there exists a Cantor minimal

homeomorphism T such that

1. htoppT q � α;

2. there exists a strong orbit equivalence between S and T , which is φm-integrable for all

integers m ¥ 0,

where φm denotes the map tÑ log t

logp�mq t
and logp�mq the composition log � . . . � log (m times).

In order to create topological entropy, we build an odomutant T from the odometer S in
such a way that the dynamics of T describes more words tPpT ipxqq0¤i¤n�1 | x P Xu than S
does, for partitions P in clopen sets that we will de�ne3. Note that this is more or less the
strategy applied by Feldman for the construction of a non loosely Bernoulli system, since loose
Bernoullicity property also deals with the words produced by a system. Then Theorem B fol-
lows from Theorem C and the variational principle since such a transformation T is necessarily
uniquely ergodic (see Proposition 2.20).

For the study of strong orbit equivalence, Bratteli diagrams have played a crucial role.
Every properly ordered Bratteli diagram provides a Cantor minimal homeomorphism, called
a Bratteli-Vershik system. Conversely, Herman, Putnam and Skau proved in [HPS92] that
every Cantor minimal homeomorphism is topologically conjugate to a Bratteli-Vershik system.
Moreover, using this characterization, Giordano, Putnam and Skau completely classi�ed the
Cantor minimal homeomorphisms up to strong orbit equivalence, using the dimension group

which turns out to be a complete invariant (see [GPS95]). We refer the reader to Appendix B
for a brief overview.

An earlier version of Theorem B (and more generally Theorem C) stated that there exists
an odomutant with positive entropy which is orbit equivalent to an odometer with almost log-
integrable cocycles. Thanks to a suggestion of Thierry Giordano, we noticed that odomutants
have already appeared in [BH94]. Indeed Boyle and Handelman stated a result similar to
Theorem C, without any quantitative information on the cocycles.

Theorem ([BH94, Theorem 2.8 and Section 3]). Let S be the dyadic odometer. If α is a

positive real number or α � �8, then there exists a Cantor minimal homeomorphism T such

that:

3Ppyq denotes the atom of the partition P which contains y P X.
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1. htoppT q � α;

2. S and T are strongly orbit equivalent.

Their proof exactly consists in building a Bratteli diagram of an odomutant associated
to the dyadic odometer. We thus manage to give a similar statement but with quantitative
information on the cocycles (Theorem C). The case of the �nite entropy is an improvement of
our earlier proof, and the case of the in�nite entropy is a translation of Boyle and Handelman's
proof in our formalism.

Another crucial point is that the orbit equivalence we build in our paper is explicit, whereas
Boyle and Handelman use the dimension group and so establish the strong orbit equivalence
in a more abstract way. The comparison between Boyle and Handelman's construction and
our formalism will be detailed in Appendix B.

Optimality of Belinskaya's theorem. Belinskaya's theorem [Bel69] states that if S and T
are orbit equivalent and one of the two associated cocycles is integrable, then S and T are �ip-
conjugate, meaning that S is conjugate to T or T�1. As a consequence, L1 orbit equivalence
is exactly �ip-conjugacy. Since integrability exactly means φ-integrability for linear maps φ,
it is interesting to study the sublinear case, as was done in [CJLMT23].

Theorem ([CJLMT23, Theorem 1.3]). Let φ : R� Ñ R� be a sublinear function4. Let S be

an ergodic probability measure-preserving transformation and assume that Sn is ergodic for

some n ¥ 2. Then there is another ergodic probability measure-preserving transformation T
such that S and T are φ-integrably orbit equivalent but not �ip-conjugate.

The authors asked whether this holds for a system S such that Sn is non-ergodic for all
n ¥ 2. The following statement provides an answer for the odometers which satisfy this
property.

Theorem D (See Theorem 6.1). Let φ : R� Ñ R� be a sublinear map and S an odometer.

There exists a probability measure-preserving transformation T such that S and T are φ-
integrably orbit equivalent but not �ip-conjugate.

As in the proofs of Theorems A and C, the counter-example T for Theorem D is again an
odomutant associated to S. To ensure that S and T are not �ip-conjugate, we notice that an
odometer is a factor of its associated odomutants, and we use the property of coalescence for
the odometers, which states that an extension of an odometer is conjugate to it if and only if
every factor map associated to this extension is an isomorphism.

Remark 1.3. Note that a probability measure-preserving transformation S such that Sn is
non-ergodic for every n ¥ 2 factors onto some odometer. It would be interesting to combine
the proof of Theorem D with this remark so as to completely remove the assumption that Sn

is ergodic for some n ¥ 2 in [CJLMT23, Theorem 1.3].

Outline of the paper. After a few preliminaries in Section 2, we introduce the notion of
odomutants in Section 3, we study its measure-theoretic and topological properties, and the
orbit equivalence with their associated odometers. Theorems A, C and D are respectively
proven in Sections 4, 5 and 6. Appendix A deals with combinatorial results preparing for the

4This means that lim
tÑ�8

φptq
t

� 0.
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proof of Theorem C. In Appendix B, we describe odomutants as Bratteli-Vershik systems and
compare our proof of Theorem C with the proof of Boyle and Handelman's theorem in [BH94].
Finally Appendix C is devoted to prove the well-known (but left unproved in the literature)
equivalence between de�nitions of loose Bernoullicity in the zero-entropy case.

Acknowledgements. I thank my advisors François Le Maître and Romain Tessera for their
support and valuable advice on writing this paper. I also thank Fabien Durand and Samuel
Petite for fruitful discussion about Cantor minimal systems. Finally, I am very greatful to
Thierry Giordano for enlightening conversations about Boyle and Handelman's works and
more generally the notion of strong orbit equivalence.

2 Preliminaries

2.1 Basic de�nitions in ergodic theory

In a measure-theoretic framework. The author may refer to [KL16] and [VO16] for
complete surveys about the notions introduced in this section.

The probability space pX,A, µq is assumed to be standard and atomless. Such a space is iso-
morphic to pr0, 1s,Bpr0, 1sq,Lebq, i.e. there exists a bimeasurable bijection Ψ: X Ñ r0, 1s (de-
�ned almost everywhere) such that Ψ�µ � Leb, where Ψ�µ is de�ned by Ψ�µpAq � µpΨ�1pAqq
for every measurable set A. We consider maps T : X Ñ X acting on this space and which
are bijective, bimeasurable and probability measure-preserving (p.m.p.), meaning that
µpT�1pAqq � µpAq for all measurable sets A � X, and the set of these transformations is
denoted by AutpX,A, µq, or simply AutpX,µq, two such maps being identi�ed if they coin-
cide on a measurable set of full measure. In this paper, elements of AutpX,µq are called
transformations or (dynamical) systems.

A measurable set A � X is T -invariant if µpT�1pAq∆Aq � 0, where ∆ denotes the
symmetric di�erence. The system T P AutpX,µq is pµ-)ergodic, or µ is T -ergodic, if every
T -invariant set is of measure 0 or 1. If T is ergodic, then T is aperiodic, i.e. Tnpxq �� x
for almost every x P X and for every n P Zzt0u, or equivalently the T -orbit of x, denoted
by OrbT pxq � tTnpxq | n P Zu, is in�nite for almost every x P X. A transformation T is
uniquely ergodic on X if it admits a unique T -invariant probability measure µ. In this
case, µ is T -ergodic since in full generality the extremal points of the convex set of T -invariant
probability measures are exactly the ergodic ones.

Denoting by L2pX,A, µq the space of complex-valued and square-integrable functions de-
�ned on X, a complex number λ is an eigenvalue of T if there exists f P L2pX,A, µqzt0u
such that f � T � λf almost everywhere (f is then called an eigenfunction). An eigenvalue
λ is automatically an element of the unit circle T � tz P C | |z| � 1u. The point spectrum
of T , denoted by SppT q, is then the set of all its eigenvalues. Notice that λ � 1 is always an
eigenvalue since the constant functions are in its eigenspace. Moreover T is ergodic if and only
if the constant functions are the only eigenfunctions with eigenvalue one, in other words the
eigenspace of λ � 1 is the line of constant functions (we say that it is a simple eigenvalue).
Finally, a system has discrete spectrum if the span of all its eigenfunctions is dense in
L2pX,A, µq.

All the properties that we have introduced are preserved under conjugacy. Two trans-
formations T P AutpX,µq and S P AutpY, νq are conjugate if there exists a bimeasurable
bijection Ψ: X Ñ Y such that Ψ�µ � ν and Ψ � T � S � Ψ almost everywhere. Some
classes of transformations have been classi�ed up to conjugacy, the two examples to keep
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in mind are the following. By Ornstein [Orn70], entropy is a total invariant of conjugacy
among Bernoulli shifts (entropy will be introduced in Section 2.3). Moreover Halmos and
von Neumann [HVN42] prove that two ergodic systems with discrete spectrums are conju-
gate if and only if they have equal point spectrums. For example, the odometers (introduced
in Section 2.5) have discrete spectrum and this theorem enables us to classify them up to
conjugacy.

Transformations T and S are said to be �ip-conjugate if T is conjugate to S or to
S�1. Since the point spectrum forms a circle subgroup, the Halmos-von Neumann theorem
actually states that the point spectrum is a total invariant of �ip-conjugacy in the class of
ergodic discrete spectrum systems. Therefore we are able to classify the odometers up to
�ip-conjugacy.

We say that S is a factor of T , or T is an extension of S, if there exists a measurable
map Ψ: X Ñ Y which is onto and such that Ψ�ν � µ and S �Ψ � Ψ � T almost everywhere.
The map Ψ is called a factor map from T to S.

In a topological framework. The notions that we have introduced are part of a measure-
theoretic setting. On the topological side, a topological (dynamical) system is a continuous
map T : X Ñ X on a topological space X (usually X is assumed to be compact). Two
topological systems T and S, respectively on topological spaces X and Y , are topologically
conjugate if there exists a homeomorphism Ψ: X Ñ Y such that Ψ � T � S � Ψ on X. A
topological system is minimal if every orbit is dense. In this paper, we will only consider
Cantor minimal homeomorphisms, namely minimal invertible topological systems on the
Cantor set.

In this paper, "systems", "conjugacy", "entropy" will always refer to the measure-theoretic
setting. For the topological setting, we will always specify "topological system", "topological
conjugacy", "topological entropy".

2.2 Measurable partitions

A set P of measurable subsets of X is a measurable partition of X if:

� for every P1, P2 P P, we have µpP1 X P2q � 0;

� the union
�
PPP P has full measure.

The elements of P are called the atoms. If P and Q are measurable partitions of pX,µq, we
say that P re�nes (or is a re�nement of, or is �ner than) Q, denoted by P ¥ Q, if every atom
of Q is a union of atoms of P (up to a null set). More generally, their joint partition is

P _Q� tP XQ | P P P, Q P Qu,

namely the coarsest partition which re�nes P and Q.
A measurable partition P de�nes almost everywhere a map Pp.q : X Ñ P where Ppxq is

the atom of P which contains x. Given a measurable map T : X Ñ X, P provides coding
maps

rPsi,n : x P X ÞÑ pPpT jxqqi¤j¤n P Pti,...,nu.

In particular, rPsnpxq� rPs0,n�1pxq is the n-word of x.
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Given atoms Pi, Pi�1, . . . , Pn of P, the equality rPsi,npxq � pPi, . . . , Pnq exactly means
that x is an element of T�ipPiq X T�pi�1qpPi�1q X . . . X T�npPnq. Therefore the partition
which gives the values of rPsi,n is the following joint partition

Pn
i �

nª
j�i

T�jpPq

with T�jpPq� tT�jpP q | P P Pu, this is a division of the space given by the dynamics of T ,
over the timeline ti, . . . , nu and with respect to P.

2.3 Measure-theoretic entropy, topological entropy

Here we present two notions of entropy. For more details, the reader may refer to [Dow11]
and [KL16].

Measure-theoretic entropy. Entropy, or measure-theoretic entropy, or metric entropy, of a
measurable transformation is an invariant of conjugacy. To de�ne it, we �rst de�ne the entropy
of a partition, which then enables us to quantify how much a transformation complexi�es the
partitions.

Let T be a system on pX,µq, not necessarily invertible, and P a �nite measurable partition
of X. Let us de�ne the entropy of P by

HµpPq� �
¸
PPP

µpP q logµpP q,

where µpP q logµpP q � 0 if P is a null set. This is a positive real number. The following
quantity

hµpT,Pq� lim
nÑ�8

HµpPn�1
0 q
n

is well-de�ned, this is the entropy of T with respect to P, and it tells us how quickly the
dynamics of T is dividing the space X with the partition P. Finally, let us de�ne the entropy
of T by

hµpT q� sup
P

hµpT,Pq,

where the supremum is over all the �nite measurable partitions P of X. This quantity is
non-negative and can be in�nite.

The following result, due to Kolmogorov and Sinaï, enables us to prove the well-known
fact that the odometers have zero entropy (see Section 2.5).

Theorem 2.1 ([Dow11, after De�nition 4.1.1]). Let pPkqk¥0 be an increasing sequence of

partitions which generates the σ-algebra of X (up to restriction to full-measure sets). Then we

have

hµ pT,Pkq Ñ
kÑ�8

hµpT q.

Topological entropy. In the topological setting, topological entropy is an invariant of topo-
logical conjugacy and is de�ned with similar ideas.

The topological space X has to be compact. We de�ne the joint cover of two open covers
U and V by

U _ V � tU X V | U P U , V P Vu.
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Let T be a topological system on X and U an open cover of X. Let us de�ne

Un�1
0 �

n�1ª
i�0

T�ipUq,

where T�ipUq� tT�ipUq | U P Uu, and
N pUq� mint|U 1| | U 1 is a subcover of Uu,

where |U 1| denotes the cardinality of U 1. The quantity N pUq is �nite since X is compact.
The topological entropy of T with respect to the open cover U is the well-de�ned

limit

htoppT,Uq� lim
nÑ�8

logN pUn�1
0 q

n
,

it tells us how quickly the dynamics of T is shrinking the open sets of U .
Finally, let us de�ne the topological entropy of T by

htoppT q� sup
U

htoppT,Uq,

where the supremum is over all the open covers U of X. This quantity is non-negative and
can be in�nite.

The following result will enables us to build an odomutant with a prescribed topological
entropy (see Lemma 5.3). We say that a sequence pUnqn¥0 of open covers generates the
topology on X if for every ε ¡ 0, there exists N ¥ 0 such that for every n ¥ N , the open sets
of Un has a diameter less than ε.

Theorem 2.2 ([Dow11, Remark 6.1.7]). Let T be a topological system on X and pUnqn¥0 a

generating sequence of open covers. Then we have

htoppT q � lim
nÑ�8

htoppT,Unq.

Example 2.3. The compact space X that we consider in this paper is of the form

X �
¹
n¥0

t0, 1, . . . , qn � 1u,

with integers qn greater or equal to 2. It admits open covers which are partitions in clopen
sets. If U is such an open cover, then Un�1

0 denotes both joint of open covers and joint of
partitions. We have N pUn�1

0 q � |Un�1
0 ztHu| and this is exactly the number of words of the

form rUsnpxq, for x P X, where rUsn is the coding map associated to the partition U (see
Section 2.2). Therefore, in the proof of Theorem C, a method to create topological entropy
consists in building a system T whose number of n-words (with respect to some partition in
clopen sets) increases quickly enough as n goes to 8.

More precisely, the open covers U that we will consider are

Ppℓq� tri0, . . . , iℓ�1sℓ | 0 ¤ i0   q0, . . . , 0 ¤ iℓ�1   qℓ�1u ,
for ℓ ¥ 1, where ri0, . . . , iℓ�1sℓ denotes the ℓ-cylinder

tx � pxnqn¥0 | x0 � i0, . . . , xℓ�1 � iℓ�1u.
Note that pPpℓqqℓ¥1 is a generating sequence of open covers. In De�nition 3.3, we will also
consider other partitions P̃pℓq, for some reasons explained in the paragraph following this
de�nition.
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The variational principle. In Example 2.3, we explain the method that we will apply in
this paper to create topological entropy and then prove Theorem C. However we also would
like to create measure-theoretic entropy to prove Theorem B. The variational principle enables
us to connect these notions.

Theorem 2.4 (Variational principle [Dow11, Theorem 6.8.1]). Let T : X Ñ X be a topological

system on a metric compact set X. Then we have

htoppT q � sup
µ

hµpT q,

where the supremum is over all the T -invariant Borel probability measures µ on X.

As a consequence, if T is uniquely ergodic, then we have

htoppT q � hµpT q,
where µ denotes the only T -invariant Borel probability measure.

2.4 Even Kakutani equivalence, loose Bernoullicity

The notions introduced in this section can be found in [Fel76] and [ORW82].
Let T P AutpX,µq. Given a measurable set A, the return time rA : A Ñ N� Y t8u is

de�ned by:
@x P A, rApxq� inf tk ¥ 1 | T kx P Au.

It follows from Poincaré recurrence theorem that, if A has positive measure, then the set
tk P N� | T kx P Au is in�nite for almost every x P A. In particular, rApxq is �nite for almost
every x P A.

Then we can de�ne a transformation TA on the set tx P A | rApxq   8u, namely on A up
to a null set, called the induced tranformation on A:

TAx� T rApxqx.

The map TA is an element of AutpA,µAq, where µA � µp.q{µpAq is the conditional probability
measure. Its entropy is given by Abramov's formula:

hµApTAq �
hµpT q
µpAq .

De�nition 2.5. Let S P AutpX,µq, T P AutpY, νq be two ergodic transformations.

1. T and S are said to be Kakutani equivalent if TA and SB are isomorphic for some
measurable sets A � X and B � Y .

2. Moreover they are evenly Kakutani equivalent if in addition two such measurable
sets have the same measure: µpAq � νpBq.

It is well-known that Kakutani equivalence and even Kakutani equivalence are equivalence
relations. It follows from Abramov's formula that entropy is preserved under even Kakutani
equivalence.

Similarly to Ornstein's theory [Orn70] for the conjugacy problem, Ornstein, Rudolph and
Weiss [ORW82] found a class of systems, called loosely Bernoulli system, where Kakutani
and even Kakutani equivalences are well understood. These systems were �rst introduced by
Feldman [Fel76].
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De�nition 2.6 (see [Fel76]).

� The f -metric between words of same length is de�ned by:

fnppaiq1¤i¤n, pbiq1¤i¤nq � 1� k

n

where k is the greatest integer for which we can �nd equal subsequences paiℓq1¤ℓ¤k and
pbjℓq1¤ℓ¤k, with i1   . . .   ik and j1   . . .   jk.

� Let T P AutpX,µq and P be a partition of X. The couple pT,Pq, called a process, is
loosely Bernoulli if for every ε ¡ 0, for every su�ciently large integer N and for each
M ¡ 0, there exists a collection G of "good" atoms in P0

�M whose union has measure
greater than or equal to 1�ε, and so that for each pair A,B of atoms in G, the following
holds: there is a probability measure nA,B on PN � PN satisfying

1. nA,Bptwu � PN q � µAptrPs1,N p.q � wuq for every w P PN ;

2. nA,BpPN � tw1uq � µBptrPs1,N p.q � w1uq for every w1 P PN ;

3. nA,Bptpw,w1q P PN � PN | fN pw,w1q ¡ εuq   ε.

� T is loosely Bernoulli if pT,Pq is loosely Bernoulli for all �nite partitions P of X.

Loose Bernoullicity for a process pT,Pq expresses the fact that, conditionally to two pasts
A and B, the laws for the future are close, meaning that there exists a good coupling between
them, with close words for the f -metric.

Example 2.7. The Bernoulli shift on t1, . . . , kuZ is loosely Bernoulli with respect to the
partition tr1s1, . . . , rks1u. Indeed, conditionally to every past, the law for the N -word is always
the uniform distribution on t1, . . . , kuN , so it su�ces to de�ne nA,B as the uniform distribution
on the diagonal of PN � PN , with the notations of the previous de�nition. This system is
more generally loosely Bernoulli since tr1s1, . . . , rks1u is a generating partition5.

We will also prove that odometers are loosely Bernoulli (see Proposition 2.15 in the next
section), using the following equivalent de�nition of loose Bernoullicity for zero-entropy sys-
tems.

Theorem 2.8. Let T P AutpX,µq and P be a partition of X and assume that hµpT,Pq � 0.
Then pT,Pq is loosely Bernoulli if and only if for every ε ¡ 0 and for every su�ciently large

integer N , there exists a collection H of "good" atoms in PN
1 whose union has measure greater

than or equal to 1� ε and so that we have fN pw,w1q ¤ ε for every w,w1 P rPs1,N pHq.
This has been stated by Feldman [Fel76, Remark in p. 22] and Ornstein, Rudolph and

Weiss [ORW82, after De�nition 6.1] for instance. However, to our knowledge, there is no
justi�cation of this statement in the literature. This is the reason why we provide a proof in
Appendix C.

The choice of the metric is very important. Indeed, with the d-metric:

dnppaiq1¤i¤n, pbiq1¤i¤nq � |t1 ¤ i ¤ n | ai �� biu|,
5To prove that a system is loosely Bernoulli, it is enough to prove it with respect to a generating partition

(see [ORW82] and the equivalent notion of �nitely �xed process).
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also called the Hamming distance, we get the notion of very weakly Bernoulli systems and this
is exactly the class considered in Ornstein's theory for the conjugacy problem.

As mentioned above, Kakutani equivalence and even Kakutani equivalence are well under-
stood in the class of loosely Bernoulli systems.

Theorem 2.9 ([ORW82, Theorems 5.1 and 5.2]). Let S P AutpX,µq, T P AutpY, νq be two

ergodic transformations.

1. If S is loosely Bernoulli and is Kakutani equivalent to T , then T is also loosely Bernoulli.

2. If S and T are loosely Bernoulli, then they are evenly Kakutani equivalent if and only if

they have the same entropy.

2.5 Odometers

Given integers q0, q1, q2, . . . greater than or equal to 2, let us consider the Cantor space

X �
¹
n¥0

t0, 1, . . . , qn � 1u,

endowed with the in�nite product topology and the associated Borel σ-algebra. The odome-

ter on X is the adding machine S : X Ñ X, de�ned for every x P X by

Sx �
$&
%

p0, . . . , 0loomoon
i times

, 1� xi, xi�1, . . .q if i� min tj ¥ 0 | xj �� qj � 1u is �nite

p0, 0, 0, . . .q if x � pq0 � 1, q1 � 1, q2 � 1, . . .q
.

In other words, S is the addition by p1, 0, 0, . . .q with carry over to the right.
An odometer is more generally a system which is conjugate to S for some choice of integers

qn. In this paper, we only consider this concrete example with the adding machine and we
refer to it as "the odometer on

±
n¥0 t0, 1, . . . , qn � 1u".

Let us introduce the cylinders of length k, or k-cylinders,

rx0, . . . , xk�1sk �
#
pynqn¥0 P

¹
n¥0

t0, 1, . . . , qn � 1u
��� y0 � x0, . . . , yk�1 � xk�1

+
.

We can de�ne a cylinder with a subset Ij of t0, 1, . . . , qj � 1u instead of xj . For instance,
rx0, I1, x2s3 denotes the set of sequences pynqn¥0 satisfying y0 � x0, y1 P I1 and y2 � x2. We
also use the symbol  when we do not want to �x the value at some coordinate. For instance,
rx0, , x2s3 denotes the set of sequences pynqn¥0 satisfying y0 � x0 and y2 � x2. By convention,
the 0-cylinder is X. For any n ¥ 1, we also set a partially de�ned map

ζn : Xzr, . . . , , qn�1 � 1sn Ñ Xzr, . . . , , 0sn
which is the addition by

p 0, . . . , 0loomoon
n�1 times

, 1, 0, 0, . . .q

with carry over to the right, and which coincides with Sq0...qn�2 on Xzr, . . . , , qn�1� 1sn. As
illustrated in Figure 1, the cylinders and the maps ζn o�er a very interesting combinatorial
structure with successive nested towers R1,R2, . . ..

6

6This kind of construction that we see in Figure 1 is called a cutting-and-stacking construction.
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[1]1

[2]1

[0, 0]2

[1, 0]2

[2, 0]2

[0, 1]2

[1, 1]2

[2, 1]2

[0, 0]2

[1, 0]2

[2, 0]2

[0, 1]2

[1, 1]2

[2, 1]2

[0, 0, 0]3

[1, 0, 0]3

[2, 0, 0]3

[0, 1, 0]3

[1, 1, 0]3

[2, 1, 0]3

[0, 0, 1]3

[1, 0, 1]3

[2, 0, 1]3

[0, 1, 1]3

[1, 1, 1]3

[2, 1, 1]3

[0, 0, 2]3

[1, 0, 2]3

[2, 0, 2]3

[0, 1, 2]3

[1, 1, 2]3

[2, 1, 2]3

ζ3 ζ3

R1 R2

R2 R3

Figure 1: Example of odometer with q0 � 3, q1 � 2, q2 � 3 (so h1 � 3, h2 � 6, h3 � 18).

From pqnqn¥0, a new sequence phnqn¥1 is de�ned by

@n ¥ 1, hn � q0q1 . . . qn�1.

The integer hn is the height of the tower Rn (see Figure 1). By convention, we set h0 � 1,
the height of the tower R0 � pXq with a single level.

As a topological system, S is a Cantor minimal homeomorphism. As a measure-theoretic
system, S is uniquely ergodic and its only invariant measure is the product µ �

Â
n¥0 µn

where µn is the uniform distribution on t0, 1, . . . , qn � 1u. For the sake of completeness,
we give a proof of the following well-known fact on odometers, which shows that the point
spectrum is also fully understood.

Proposition 2.10. Let S be the odometer on
±
n¥0 t0, 1, . . . , qn � 1u. Its point spectrum is

SppSq �
"
exp

�
2iπk

hn



| n ¥ 1, 0 ¤ k ¤ hn � 1

*

and for every λ � exp
�
2iπk
hn

	
P SppSq, the map

fλ : x P X ÞÑ
hn�1¸
j�0

λj1Sjpr0,...,0snqpxq

is an eigenfunction associated to λ. Moreover S has discrete spectrum.
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Remark 2.11. The de�nition of fλ does not depend on the choice of k and n such that

λ � exp
�
2iπk
hn

	
. Moreover, for n � 0, we have f1 � 1X (by convention, the 0-cylinder is X).

Proof of Proposition 2.10. Let us set Λ�
!
exp

�
2iπk
hn

	
| n ¥ 1, 0 ¤ k ¤ hn � 1

)
. It is straight-

forward to check that fλ is an eigenfunction associated to λ, for every λ P Λ. Let us show that
the span of tfλ | λ P Λu is dense in L2pX,µq. It will implies that S has discrete spectrum and
that Λ � SppSq.

Let n ¥ 1 and λ � exp
�
2iπ
hn

	
. Given a0, . . . , ahn�1 P C, we have

hn�1¸
ℓ�0

aℓfλℓ �
hn�1¸
j�0

P pλjq1Sjpr0,...,0snq

with the polynomial P � a0 � a1Y � . . . � ahn�1Y
hn�1. For every j P t0, . . . , hn � 1u, there

exists a polynomial Pj of degree less than hn, satisfying Pjpλjq � 1 and P pλkq � 0 for all
k P t0, . . . , hn � 1uztju. This implies that the characteristic functions of cylinders are linear
combinations of the eigenfunctions fλ for λ P Λ, hence the result.

Let us now explain the classi�cation of odometers up to conjugacy (and even �ip-conjugacy).
Let Π denote the set of prime numbers.

De�nition 2.12. A supernatural number is a formal product of the form
±
pPΠ p

kp , with
kp P NY t�8u.

Given a prime number p P Π, denote by νppkq the p-adic valuation of a positive integer
k. To every odometer de�ned with integers q0, q1, . . ., we associate a supernatural number±
pPΠ p

kp de�ned by

kp �
¸
n¥0

νppqnq.

As a consequence of Proposition 2.10 and the Halmos-von Neumann theorem, the supernat-
ural number

±
pPΠ p

kp forms a total invariant of measure-theoretic conjugacy in the class of
odometers. If kp � 8 for every prime number p, then the odometer is said to be universal.
Given a prime number p, the p-odometer is the odometer such that kp � 8 and kq � 0 for
every q P Πztpu. In the case p � 2, it is also called the dyadic odometer.

Proposition 2.10 also implies that every odometer is coalescent.

De�nition 2.13. A transformation S P AutpX,µq is coalescent if every system T P AutpX,µq
which is isomorphic to S satis�es the following: every factor map from T to S is an isomor-
phism.

The fact that odometers are coalescent is proven in [HP68] and [New71]. In these articles,
one proves that more general systems are coalescent and the phenomenon can be generalized
in the context of group actions (see [IT16]). Here we give a short proof for ergodic systems
with discrete spectrum.

Theorem 2.14. Every ergodic system with discrete spectrum is coalescent.

Proof of Theorem 2.14. Let S P AutpX,µq be an ergodic system with discrete spectrum, T P
AutpX,µq isomorphic to S, and Ψ: X Ñ X a factor map from T to S. Given λ P T, let us
denote by ESpλq (resp. ET pλq) the eigenspace of S (resp. T ) associated to λ. First, ergodicity
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implies that non-zero eigenspaces have dimension 1 (see Proper Value Theorem in [Hal56,
page 34]). Secondly, since Ψ is a factor map, every eigenfunction f of S gives rise to the
eigenfunction f � Ψ of T , and more precisely f � Ψ lies in ET pλq if f lies in ESpλq. Hence,
since S and T are isomorphic, these two remarks imply that ET pλq � tf �Ψ | f P ESpλqu for
every λ in the point spectrum of S (or equivalently the point spectrum of T ). This implies

L2pX,µq � tf �Ψ | f P L2pX,µqu

since they have discrete spectrum. Hence Ψ is an isomorphism.

For the proof of Theorem D, the systems that we will consider will be an odometer S
and an associated odomutant T (the odomutants are introduced in Section 3.1). Since the
odomutants are extensions of their associated odometer and since we explicitely know a factor
map ψ between them (see Proposition 3.4), Theorem 2.14 will ensure that we will not build
an orbit equivalence between �ip-conjugate systems if ψ is not invertible.

Finally, odometers have the following properties.

Proposition 2.15. Odometers have zero measure-theoretic and topological entropies.

Proposition 2.16. Odometers are loosely Bernoulli.7

Remark 2.17. In the case of odometers, we can notice in the following proofs that zero
entropy and loose Bernoullicity follow from a poor dynamics of these systems. Indeed, given
concrete partitions (for instance the partitions Ppkq given by the cylinders of length k, which
increase to the σ-algebra), the dynamics of an odometer does not generate a lot of words and
the di�erent futures are close (in the sense of the de�nition of loose Bernoullicity). The idea
behind the de�nition of odomutants will be to get systems with a less "laconic" dynamics.

Proof of Proposition 2.15. Let S be an odometer. The equality hµpSq � htoppSq follows from
unique ergodicity and the variational principle (Theorem 2.4). Let Ppkq be the partition given
by the cylinders of length k. The odometer S acts as a cyclic permutation on the elements of
Ppkq, so the sequence ppPpkqqn�1

0 qn¥1 of partitions is stationary and we have hµpS,Ppkqq � 0.
The sequence pPpkqqk¥0 increases to the σ-algebra of X, so we have hµpS,Ppkqq Ñ

kÑ�8
hµpSq

by Theorem 2.1, and we get hµpSq � 0.

Proof of Proposition 2.16. Let S be an odometer, associated to the integers q0, q1, . . ., let Ppkq
be the partition given by the cylinders of length k. We prove that pS,Ppkqq is loosely Bernoulli
for every k ¥ 1, and we deduce from this that pS,Pq is loosely Bernoulli for any �nite partition
P. We use the caracterisation provided by Theorem 2.8.

Let us prove that pS,Ppkqq is loosely Bernoulli. Let ε ¡ 0, N ¥ 2hk{ε and H � PN
1 . Let

us denote by W the word
�
Sipr0, . . . , 0skq

�
0¤i¤hk�1

P pPpkqqt0,...,hk�1u of length hk, this is the
enumeration of the k-cylinders, with the order given by the dynamics of S. For every x P X,
the word rPpkqs1,N pxq consists of the tail of the word W , followed by many concatenations
of W , and the beginning of W . So any two words w � rPpkqs1,N pxq and w1 � rPpkqs1,N px1q
satisfy fN pw,w1q ¤ 2hk{N ¤ ε. This proves that pS,Ppkqq is loosely Bernoulli.

Now let P be a �nite measurable partition and let us show that pS,Pq is loosely Bernoulli.
The sequence pPpkqqk¥0 increases to the σ-algebra of X, so for a given ε ¡ 0, there exists k ¥ 0
such that P and Ppkq are close, meaning that there exists a Ppkq-measurable partition Q, with

7More generally, rank-one systems are loosely Bernoulli, this is proven by Ornstein, Rudolph and
Weiss [ORW82] (see Lemma 8.1) and we present their proof in the special case of odometers.
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|Q| � |P|� n, and a good enumeration of the atoms ofQ and P such that
°n
i�j µpPj∆Qjq   ε.

Since Ppkq re�nes Q, words with respect to Ppkq completely determine words with respect
to Q, so pS,Qq is immediately loosely Bernoulli. Then, if N is su�ciently large, there exists
H � QN

1 covering at least 1� ε of the space and such that any two words w,w1 P rQs1,N pHq
satisfy fN pw,w1q ¤ ε (the f -metric with respect to Q). By the ergodic theorem, for every
su�ciently large integer N ¡ 0, there exists a subset X0 of X such that µpX0q ¥ 1 � ε and
every x P X0 satis�es

1

N

�����
#
i P t1, 2, . . . , Nu | Six P

n¤
j�1

pPj XQjq
+����� ¥ 1� 2ε.

This implies that for every x P X0, the word rQs1,N pxq determines at least a fraction 1 � 2ε
of the word rPs1,N pxq. Therefore, given x, x1 P X0 X p�CPHCq, the words w � rPs1,N pxq and
w1 � rPs1,N px1q satisfy fN pw,w1q ¤ 5ε (the f -metric with respect to P). It remains to de�ne
H1 � PN

1 as the set of atoms with non trivial intersection with X0 X
�
CPHC. It covers at

least 1� 3ε of the space and, with respect to P, every two N -words w and w1 produced in H1

satisfy fN pw,w1q ¤ 5ε, so we are done.

2.6 Orbit equivalence

The conjugacy problem in full generality is very complicated (see [FRW11]). We now give the
formal de�nition of orbit equivalence, which is a weakening of the conjugacy problem.

De�nition 2.18. Two aperiodic transformations S P AutpX,µq and T P AutpY, νq are orbit
equivalent if there exists a bimeasurable bijection Ψ: X Ñ Y satisfying Ψ�µ � ν, such that
OrbSpxq � OrbΨ�1TΨpxq for almost every x P X. The map Ψ is called an orbit equivalence
between S and T .

We can then de�ne the cocycles associated to this orbit equivalence. These are measurable
functions cS : X Ñ Z and cT : Y Ñ Z de�ned almost everywhere by

Sx � Ψ�1T cSpxqΨpxq and Ty � ΨScT pyqΨ�1pyq

(cSpxq and cT pyq are uniquely de�ned by aperiodicity).

Remark 2.19. Conversely, the existence of a cocycle, let us say cT , implies the inclusion
of the pΨ�1TΨq-orbits in the S-orbits. So the existence of both cocycles cS and cT implies
equality of orbits. This well-known characterization of orbit equivalence will be used in the
proof of Theorem 3.16.

Given a map φ : R� Ñ R�, a measurable function f : X Ñ Z is said to be φ-integrable if»
X
φp|fpxq|qdµ   �8.

For example, integrability is exactly φ-integrability when φ is non-zero and linear, and a weaker
quanti�cation on cocycles is the notion of φ-integrability for a sublinear map φ, meaning that
limtÑ�8 φptq{t � 0. Two transformations in AutpX,µq are said to be φ-integrably orbit

equivalent if there exists an orbit equivalence between them whose associated cocycles are
φ-integrable. The notion of Lp orbit equivalence refers to the map φ : x Ñ xp, and a L p

orbit equivalence is by de�nition an orbit equivalence which is Lq for all q   p.
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Another form of quantitative orbit equivalence is Shannon orbit equivalence. We say that
a measurable function f : X Ñ Z is Shannon if the associated partition tf�1pnq | n P Zu of
X has �nite entropy, namely

�
¸
nPZ

µpf�1pnqq logµpf�1pnqq   �8.

Two transformations in AutpX,µq are Shannon orbit equivalent if there exists an orbit
equivalence between them whose associated cocycles are Shannon.

Note that orbit equivalence preserves ergodicity. The next statement speci�cally connects
orbit equivalence and unique ergodicity. Theorem C and this proposition together with the
variational principle directly imply Theorem B.

Proposition 2.20. Assume that two aperiodic measurable bijections S and T on a Borel space

X are orbit equivalent in the following stronger way: S and T are de�ned on the whole X and

the equality OrbSpxq � OrbT pxq holds for every x P X.8 Then S is uniquely ergodic if and only

if T is uniquely ergodic. In this case, S and T have the same invariant probability measure.

Proof of Proposition 2.20. Assume that S is uniquely ergodic and denote by µ its only invari-
ant probability measure. The cocycle cS : X Ñ Z is de�ned on the whole X and is measurable.
Let ν be a T -invariant probability measure. For every measurable set A, we have

νpSpAqq �
¸
kPZ

νpSpAX tcS � kuqq

�
¸
kPZ

νpT kpAX tcS � kuqq

�
¸
kPZ

νpAX tcS � kuq

� νpAq,

so ν is S-invariant and is equal to µ. Therefore T is uniquely ergodic and µ is its only invariant
probability measure.

For instance, strong orbit equivalence is a form of orbit equivalence, introduced in a topo-
logical framework by Giordano, Putnam and Skau [GPS95], to which Proposition 2.20 applies.
The de�nition is the following.

De�nition 2.21. Two Cantor minimal homeomorphisms pX,Sq and pY, T q are strongly orbit
equivalent if there exists a homeomorphism Ψ: X Ñ Y such that S and Ψ�1TΨ have the
same orbits on X and the associated cocycles each have at most one point of discontinuity.

Boyle proved in his thesis [Boy83] that strong orbit equivalence with continuous cocycles
boils down to topological �ip-conjugacy, namely S is topologically conjugate to T or to T�1.
As mentioned in the introduction, the classi�cation of Cantor minimal homeomorphisms up to
strong orbit equivalence is fully understood, with complete invariants such as the dimension
group (see [GPS95], and Appendix B for a brief overview).

8This is stronger than asking this property up to a null set.
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3 Odomutants

3.1 De�nitions

Let X �
±
n¥0 t0, 1, . . . , qn � 1u with integers qn ¥ 2, and let us recall the notation hn �

q0 . . . qn�1. The space X is endowed with the in�nite product topology and we denote by µ
the product of the uniform distributions on each t0, 1, . . . , qn � 1u. We consider the odometer
S : X Ñ X on this space. Recall that it is de�ned by

Sx �
$&
%

p0, . . . , 0loomoon
i times

, xi � 1, xi�1, . . .q if i� min tj ¥ 0 | xj �� qj � 1u is �nite

p0, 0, 0, . . .q if x � pq0 � 1, q1 � 1, q2 � 1, . . .q
,

and it is a µ-preserving homeomorphism.

In this section, we introduce new systems that we call odomutants, de�ned from S with
successive distortions of its orbits, encoded by the following maps ψ and ψn (for n ¥ 0).

For every n ¥ 0, we �x a �nite sequence
�
σ
pnq
i

	
0¤i qn�1

of permutations of the set

t0, 1, . . . , qn � 1u, and we introduce

ψn :

#
X Ñ X

x � px0, x1, . . .q ÞÑ pσp0qx1 px0q, σp1qx2 px1q, σp2qx3 px2q, . . . , σpnqxn�1pxnq, xn�1, xn�2, . . .q
.

It is not di�cult to see that ψn is a homeomorphism and preserves the measure µ, its inverse
is given by

ψ�1
n :

"
X Ñ X
x � px0, x1, . . .q ÞÑ pz0pxq, z1pxq, . . . , znpxq, xn�1, xn�2, . . .q

with zipxq de�ned by backwards induction as follows:

znpxq�
�
σpnqxn�1

	�1
pxnq,

zipxq�
�
σ
piq
zi�1pxq

	�1
pxiq for every i P t0, 1, . . . , n� 1u.

(1)

Let us also introduce

ψ :

#
X Ñ X

x � px0, x1, . . .q ÞÑ
�
σ
pnq
xn�1pxnq

	
n¥0

.

The map ψ is continuous but is not invertible in full generality. It is not di�cult to see that
ψnpxq Ñ

nÑ�8
ψpxq for every x P X. The map ψ also have the following properties.

Proposition 3.1. ψ : X Ñ X preserves the probability measure µ and is onto.

Proof of Proposition 3.1. To prove that µ is ψ-invariant, it su�ces to prove the equality
µpψ�1pAqq � µpAq when A is a cylinder. If A is an pn� 1q-cylinder, then ψ�1pAq � ψ�1

n pAq,
so the ψ-invariance follows from the ψn-invariance for all n ¥ 0.

Given y P X, let us �nd x P X such that ψpxq � y. By de�nition, for every n ¥ 0,
ψpψ�1

n pyqq is in the cylinder ry0, . . . , ynsn�1, so ψpψ�1
n pyqq Ñ

nÑ�8
y. By compactness, there

exists a convergent subsequence of
�
ψ�1
n pyq�

n¥0
, of limit x P X, and we have ψpxq � y since

ψ is continuous.
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The following computations motivate the de�nition of odomutants. Let us respectively set
the minimal and maximal points of X:

x� � p0, 0, 0, . . .q and x� � pq0 � 1, q1 � 1, q2 � 1, . . .q.
We de�ne the following sets

X�
n � tx P X | px0, . . . , xnq �� px�0 , . . . , x�n qu,

X�
n � tx P X | px0, . . . , xnq �� px�0 , . . . , x�n qu,
X�
8 � Xztx�u and X�

8 � Xztx�u.
It is not di�cult to see that X�

8 is the increasing union of the sets X�
n , so for every x P X�

8,
we denote by N�pxq the least integer n ¥ 0 satisfying x P X�

n . This also holds for X�
8 and

X�
n , and N

�pxq is de�ned similarly.
Let x P ψ�1pX�

8q and N � N�pψpxqq. By de�nition of N , for every n ¥ N , Sψnpxq is
equal to

p0, . . . ,0looomooon
N times

, σNxN�1
pxN q ��� 1, σpN�1q

xN�2
pxN�1q, . . . , σpnqxn�1

pxnq, xn�1, xn�2, . . .q.

Using (1), we get

ψ�1
n Sψnpxq � pypnq0 pxq, . . . , ypnqn pxq, xn�1, xn�2, . . .q

with y
pnq
i pxq de�ned by backwards induction as follows:

ypnqn pxq�
�
σpnqxn�1

	�1
pσpnqxn�1

pxnqq � xn,

@ n ¡ i ¡ N, y
pnq
i pxq�

�
σ
piq

y
pnq
i�1pxq


�1

pσpiqxi�1
pxiqq,

y
pnq
N pxq�

�
σ
pNq

y
pnq
N�1pxq


�1

pσpNq
xN�1

pxN q � 1q,

@ N ¡ i ¥ 0, y
pnq
i pxq�

�
σ
piq

y
pnq
i�1pxq


�1

p0q.

By induction, it is easy to get pypnqN�1pxq, . . . , ypnqn pxqq � pxN�1, . . . , xnq and this implies the

following simpli�cation: ψ�1
n Sψnpxq is equal to pypnq0 pxq, . . . , ypnqN pxq, xN�1, xN�2, . . .q with

y
pnq
i pxq inductively de�ned by

y
pnq
N pxq�

�
σpNq
xN�1

	�1
pσpNq
xN�1

pxN q � 1q,

@ 0 ¤ i ¤ N � 1, y
pnq
i pxq�

�
σ
piq

y
pnq
i�1pxq


�1

p0q.

Finally, pypnq0 pxq, . . . , ypnqN pxqq does not depend on the integer n ¥ N�pψpxqq.
De�nition 3.2. For every x P ψ�1pX�

8q, let us de�ne
Tx� ψ�1

n Sψnpxq
for any n ¥ N�pψpxqq. The map T is called the odomutant associated to the odometer S

and the sequences of permutations
�
σ
pnq
i

	
0¤i qn�1

for n ¥ 0.
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An odomutant T associated to S

[3]1

[2]1

[1]1

[0]1

q1 = 3

q2 = 2

[3]1

[2]1

[1]1

[0]1

{[•, 2]2 {[•, 2]2

{[•, 1]2

{[•, 0]2

[•, •, 0]3 [•, •, 1]3

[•, 0]2 [•, 1]2 [•, 2]2 [•, 0]2 [•, 1]2 [•, 2]2
σ
(0)
0 = (0123) σ

(0)
1 = (0213) σ

(0)
0 = (0321)

{[•, 1]2

{[•, 0]2

[•, •, 0]3 [•, •, 1]3
σ
(1)
0 = (012) σ

(1)
1 = (021)

The odometer S on
∏
n≥0

{0, . . . , qn − 1}

q0 = 4

Figure 2: Example of the �rst two steps in the construction of an odometer (on the left) and an associated
odomutant (on the right). For a permutation σ of the set t0, . . . , k � 1u, the notation σ � pi0 . . . ik�1q means
that σ is de�ned by σpjq � ij for every j P t0, . . . , k � 1u. The area coloured in purple (resp. orange) is the
subset on which S and T are not yet de�ned at the end of the �rst step (resp. second step), it is equal to
tN� � 1u (resp. tN� � 2u) for the odometer, tN� � ψ � 1u (resp. tN� � ψ � 2u) for the odomutant.

As illustrated in Figure 2, an odomutant T is a probability measure-preserving bijection
that we build step by step. At step n, T is well-de�ned on tN�pxq � nu. This is a cutting-
and-stacking method very similar to the odometer, but at every step the way we connect the
subcolumns of the tower depend on the next coordinates.
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3.2 Odomutants with multiplicities

At �rst view, when looking at Figure 2, we can think that an odomutant is encoded by a
cutting-and-stacking construction where the new towers at each step are built by stacking
only one copy of the dynamics of each subcolumn. Actually, with some redondancies in the
permutations of a same step, it is possible to encode a cutting-and-stacking construction where,
at every step and for every subcolumn, many copies of its dynamics could appear in each new
tower (as illustrated in Figure 3). In this case, the partitions in cylinder of the same length
are not the information we want to keep in mind, since they also remember that we divide the
subcolumns to get many copies of its dynamics. This motivates the following de�nition that
we explain with more details after.

De�nition 3.3. Let pqnqn¥0 be a sequence of integers greater than or equal to 2. Let c �
pcn,0, . . . , cn,q̃n�1qn¥1 be a sequence where q̃n and cn,i are positive integers satisfying qn �
cn,1�. . .�cn,q̃n , and pτ pnqj qjPt0,...,q̃n�1�1u be a sequence of permutations of the set t0, . . . , qn�1u
for every n ¥ 0. For every n ¥ 1 and every j P t0, . . . , q̃n � 1u, we set

I
pnq
j �

�
j�1̧

i�0

cn,i

�
� t0, 1, . . . , cn,j � 1u .9

Then we say that T is the odomutant built with c-multiple permutations τ
pnq
j , if T is

the odomutant associated to the odometer on the space
±
n¥0 t0, . . . , qn � 1u and families

of permutations pσpnqi q0¤i qn�1 , where for every n ¥ 0 and every j P t0, . . . , q̃n�1u, we have

σ
pnq
i � τ

pnq
j for all integers i P Ipn�1q

j .

In this case, we associate partitions P̃pℓq for every ℓ ¥ 1, de�ned by

P̃pℓq�
!
ri0, . . . , iℓ�2, I

pℓ�1q
j sℓ | 0 ¤ i0   q0, . . . , 0 ¤ iℓ�2   qℓ�2, 0 ¤ j ¤ q̃ℓ�1 � 1

)
.

We say that the odomutant is built with uniformly c-multiple permutations if we have
cn,0 � . . . � cn,q̃n�1 �: cn for every n ¥ 1, and we simply write c� pcn, q̃nqn¥0.

At the beginning of step n, for every i P t0, . . . , q̃n�1u there are ci subcolumns which have

been de�ned with the same permutation10 τ
pn�1q
i at step n� 1, they actually play the role of

ci copies of the dynamics of a subcolumn that we would like to stack ci times in each tower.
When considering the partition P̃pn� 1q, we cannot distinguish between these "copies", as if
it was the partition made up of the subcolumns that we would like to stack more than once
in each tower.

The odomutants built with uniformly multiple permutations, equipped with the associ-
ated partitions pP̃pℓqqℓ¥1, better describe Boyle and Handelman's contructions [BH94] than
odomutants equipped with Ppℓqℓ¥1. We refer the reader to Appendix B for more details,
more precisely in Section B.4. The sequences pcnqn and pq̃nqn respectively correspond to the
sequences pnkqk and pmkqk introduced in their paper. Then, to prove Theorem C in the case
α � �8, we will partly reformulate the proof of their similar statement with our formalism.
Our proof in the case α   �8 will be di�erent than theirs since we will build an odomutant
with pairwise di�erent permutations at each step.

9We write s � t0, 1, . . . , ku � ts, s � 1, . . . , s � ku. The family pI
pnq
0 , . . . , I

pnq
q̃n�1q forms a partition of

t0, 1, . . . , qn � 1u.
10Note that the permutations τ

pn�1q
0 , . . . , τ

pn�1q
q̃n�1 are not necessarily pairwise di�erent.
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h2

q̃1 = 2

h1 = q0

q̃2 = 2

}
}
} [•, 0]2

[•, 1]2

[•, 2]2

q1 = 3

q̃2 = 2

τ
(0)
1 = (0, q0 − 1, q0 − 2, . . . , 1)

I
(0)
0 = {0, 1}

σ
(0)
0 = σ

(0)
1 = τ

(0)
0 σ

(0)
2 = τ

(0)
1

τ
(0)
0 = (0, 2, 1, 3, . . . , q0 − 1)

[•, 0]2 [•, 1]2 [•, 2]2

τ
(1)
0 = (0, 2, 1) τ

(1)
1 = (2, 1, 0)

I
(0)
1 = {2}

c1,1 = 1c1,0 = 2

Figure 3: At the top, the second step of a less restrictive cutting-and-stacking construction that we want to
describe with an odomutant. At the bottom, the way we encode it with such a system. Here, the dynamics of
the yellow tower appears twice in each new towers, so we divide it in two subtowers. Note that the partition
P̃p2q is exactly the partition which gives the colour (yellow or blue) and the level in the h0-tower to each points
of the space, so that we cannot distinguish between points of the two yellow subtowers which are at the same
level, contrary to the partition Pp2q. For the third step of the construction, the value of q2 will depend on the
number (c2,0 and c2,1) of copies for the dynamics of the two current towers in the next ones.

As mentionned in the introduction, our formalism of odomutants was inspired by Feld-
man's construction [Fel76] of a non-loosely Bernoulli system. As we will see in the proof of
Theorem A, this system is an odomutant built with uniformly c-multiple permutations where

the integers cn are powers of 2 and for a �xed n, the permutations τ
pnq
i are pairwise di�erent

at each step.
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3.3 Odomutants as p.m.p. bijections on a standard probability space

In this section, we study odomutants with a measure-theoretic viewpoint.

3.3.1 First properties

Proposition 3.4. T is a bijection from ψ�1pX�
8q to ψ�1pX�

8q, its inverse is given by

T�1y � ψ�1
n S�1ψnpyq

for every y P ψ�1pX�
8q and any n ¥ N�pψpyqq. Moreover T is an element of AutpX,µq and

ψ is a factor map from T to S.

Proof of Proposition 3.4. The equality ψnpTxq � Sψnpxq implies ψpTxq � Sψpxq since ψn
converges pointwise to ψ. Moreover, the map ψ preserves the measure µ and is onto (see
Proposition 3.1). Thus, assuming that T is in AutpX,µq, S is a factor of T via the factor map
ψ.

Since X�
8 is the increasing union of the sets X�

n , and for every n ¥ 0, T and ψ�1
n Sψn

coincide on X�
n , the injectivity of T on ψ�1pX�

8q follows from the injectivity of S and the
maps ψn and ψ�1

n .
For x P ψ�1pX�

8q, we have ψpTxq � Sψpxq and ψpxq �� x�, so ψpTxq is not equal to x�.
Conversely, for y P ψ�1pX�

8q, the element x � ψ�1
n S�1ψnpyq does not depend on the choice

of an integer n ¥ N�pψpyqq (these are the same computations as before De�nition 3.2) and
satis�es Tx � y.

By ψ-invariance, the sets ψ�1pX�
8q and ψ�1pX�

8q have full measure, so T : X Ñ X is a
bijection up to measure zero. It follows again from the properties of S and the maps ψn that
T is bimeasurable and preserves the measure µ.

The next result provides a criterion for ψ to be an isomorphism between T and S. We
will not apply it in this paper but it enables us to understand that, in case permutations have
common �xed points11 (see Section 3.5), we will need the sequence pqnqn¥0 to increase quickly
enough, otherwise we get an odomutant T conjugate to S.

Lemma 3.5. For every n ¥ 0, we set

Fn � txn P t0, . . . , qn � 1u | @xn�1 P t0, . . . , qn�1 � 1u, σpnqxn�1
pxnq � xnu.

If the series
° |Fn|

qn
diverges, then ψ is an isomorphism between S and T .

Proof of Lemma 3.5. By the Borel-Cantelli lemma, the set

X0 � tpxnqn¥0 P X | xn P Fn for in�nitely many integers nu
has full measure. It is also S-, T - and ψ-invariant and it is easy to check that ψ : X0 Ñ X0

is a bijection, using the fact that the equality σ
pnq
xn�1pxnq � yn implies xn � yn when yn is in

Fn.

Remark 3.6. It is not hard to see, independently of Lemma 3.5, that in order to prove
Theorems A and B, one needs the sequence pqnqn¥0 to be unbounded. Otherwise, let K
denote an upper bound of the sequence, then the underlying odomutant admits a cutting-and-
stacking construction with at most K towers at each step. A system satisfying such property
is said to have rank K (and more generally �nite rank) and it is well-known that it is loosely
Bernoulli and has zero entropy (see [Fer97]).

11For Theorem A (resp. Theorem C), we will require σ
pnq
i p0q � 0 (resp. σ

pnq
i p0q � 0 and σ

pnq
i pqn�1q � qn�1).
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Question 3.7. Is it possible to �nd a necessary and su�cient condition on the permutations

σ
pnq
i (for n ¥ 0 and 0 ¤ i   qn�1) for the factor map ψ to be an isomorphism? Since every

odometer is coalescent (see Theorem 2.14), this would enable us to know whether or not an
odomutant is conjugate to its associated odometer.

The following two results will be useful for some computations in the proofs of Lemma 3.11
and Proposition 3.15. They deal with the well-de�nedness of powers (positive or negative) of
an odomutant at some point of X.

Proposition 3.8. For k P N, the following assertion hold.12

� If ψpxq is in
�k�1
i�0 S

�ipX�
8q, then Tx, T 2x, . . . , T kx are well-de�ned and for every i P

t0, . . . , ku, we have

T ix � ψ�1
n Siψnpxq

for any n ¥ max0¤j¤i�1N
�pψpT jxqq.

� If ψpxq is in
�0
i��pk�1q S

�ipX�
8q, then T�1x, T�2x, . . . , T�kx are well-de�ned and for

every i P t�pk � 1q, . . . , 0u, we have

T�ix � ψ�1
n S�iψnpxq

for any n ¥ max�pi�1q¤j¤0N
�pψpT jxqq.

Proof of Proposition 3.8. For example, let us prove the �rst point by induction over k ¥ 1.
The proof of the second point is similar.

The result is clear for k � 0. Let k ¥ 1. Let us assume that the result holds for k � 1 and
that

ψpxq P
k�1£
i�0

S�in pX�
8q.

This implies that T k�1x is well-de�ned and is equal to ψ�1
n Sk�1ψnpxq for any n greater than

or equal to max0¤j¤k�2N
�pψpT jxqq. Moreover ψpT k�1xq is not equal to x�. Indeed, the �rst

n� 1 coordinates of ψpT k�1xq and ψnpT k�1xq are the same and we have

ψnpT k�1xq � Sk�1ψnpxq
for any n ¥ max0¤j¤k�2N

�pψpT jxqq, so this follows from the fact that Sk�1ψpxq is not
equal to x�. This implies that T kx is well-de�ned and equal to ψ�1

n SψnpT k�1xq for any
n ¥ N�pψpT k�1xqq. Finally, for any n ¥ max0¤j¤k�1N

�pψpT jxqq, we get
T kx � ψ�1

n SψnpT k�1xq � ψ�1
n Sψnpψ�1

n Sk�1ψnpxqq � ψ�1
n Skψnpxq,

hence the result for k.

Corollary 3.9. Let x, y P X and M P N� such that xj � yj for every j ¥M , and set

K �
M�1¸
j�0

hj

�
σpjqyj�1

pyjq � σpjqxj�1
pxjq

	
.

Assume that x and y are di�erent. Then the following hold:

12For instance, this holds for every x P X�
8 such that ψpxq is not in OrbSpx

�q (which is also the S-orbit of
x�), so the hypothesis holds for a set of points x of full measure.
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� if K ¡ 0, then Tx, T 2x, . . . , TKx are well-de�ned;

� if K   0, then T�1x, T�2x, . . . , TKx are well-de�ned.

Moreover we have TKx � y.

Remark 3.10. The proof of the equality TKx � y is based on the well-understood case of

an odometer, namely the permutations σ
pnq
i are all identity maps and T � S. More precisely,

given w, z P X satisfying wj � zj for every j greater than or equal to some M , we know that
SKw � z with

K �
M�1¸
j�0

hj pzj � wjq.

It remains to apply this well-known fact to w � ψnpxq and z � ψnpyq for a large enough
integer n.

Proof of Corollary 3.9. Let us consider the case K ¡ 0 (the proof for the other case is similar).
By the previous remark, it is clear that we have

y � ψ�1
n SKψnpxq

for every n ¥ M . Using Proposition 3.8, it remains to prove that Siψpxq is not equal to x�
for every i P t0, . . . ,K � 1u. If there exists a positive integer i such that Siψpxq � x�, then
we have

σpjqxj�1
pxjq � qj � 1

for every su�ciently large integers j, and

i �
�8̧

j�0

hj

�
qi � 1� σpjqxj�1

pxjq
	

�
M�1¸
j�0

hj

�
qi � 1� σpjqxj�1

pxjq
	
�

�8̧

j�M

hj

�
qi � 1� σpjqxj�1

pxjq
	

¥
M�1¸
j�0

hj

�
σpjqyj�1

pyjq � σpjqxj�1
pxjq

	
.

Therefore i is greater than or equal to K and we are done.

3.3.2 An odomutant and its associated odometer have the same point spectrum

Since every odomutant T factors onto its associated odometer S, we have the inclusion SppSq �
SppT q between the point spectrums. We actually show that this is an equality. The following
lemma is inspired by Danilenko and Vieprik's methods to study the point spectrum of rank-one
systems (see Proposition 3.7 in [DV23]).

Lemma 3.11. Let T be an odomutant built from the odometer S on X �±
n¥0 t0, . . . , qn � 1u

and the families of permutations pσpnqxn�1q0¤xn�1 qn�1. If λ P T is an eigenvalue of T , then
for every ε ¡ 0, there exists a positive integer n such that for every m ¥ n, there exist

En,m �±m
j�n t0, . . . , qj � 1u and xm�1 P t0, . . . qm�1 � 1u satisfying the following:

�

|En,m|
qnqn�1 . . . qm

¡ 1� ε;
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� for every pyn, . . . , ymq, pzn, . . . , zmq P En,m, we have����1� λ
°m

j�n hj

�
σ
pjq
yj�1

pyjq�σ
pjq
zj�1

pzjq
	����   ε,

with ym�1 � zm�1 � xm�1.

Proof of Lemma 3.11. Let ε ¡ 0, λ P T an eigenvalue of T and gλ an eigenfunction of T
associated to λ. Without loss of generality, we assume that ε ¤ 1{2. Moreover, the modulus
of gλ is almost everywhere constant (since it is T -invariant and T is ergodic), so we assume
that gλ has modulus 1. There exists α P T and a measurable subset A � X of positive measure
such that

@x P A, |gλpxq � α|   ε{2. (2)

Since the partition given by the n-cylinders is increasing to the σ-algebra on X as n Ñ �8,
we can �nd n ¡ 0 and px0, . . . , xn�1q P

±n�1
j�0 t0, . . . , qj � 1u such that

µpAX rx0, . . . , xn�1snq ¡ p1� ε2qµprx0, . . . , xn�1snq.

Let m ¥ n. Then there exists xm�1 P t0, . . . , qm�1 � 1u such that

µpAX rx0, . . . , xn�1, , . . . , , xm�1sm�2q ¡ p1� ε2qµprx0, . . . , xn�1, , . . . , , xm�1sm�2q (3)

and we set

En,m �

#
pyn, . . . , ymq P

m¹
j�n

t0, . . . , qj � 1u
��� µpAX rx0, . . . , xn�1, yn, . . . , ym, xm�1sm�2q ¡

p1� εqµprx0, . . . , xn�1, yn, . . . , ym, xm�1sm�2q

+
.

By Inequality (3), we get
|En,m|
qn . . . qm

¡ 1� ε.

Let pyn, . . . , ymq, pzn, . . . , zmq P En,m. Let us set

By � AX rx0, . . . , xn�1, yn, . . . , ym, xm�1sm�2,

Bz � AX rx0, . . . , xn�1, zn, . . . , zm, xm�1sm�2.

and

K �
m̧

j�n

hj

�
σpjqyj�1

pyjq � σpjqzj�1
pzjq

	

(with ym�1 � zm�1 � xm�1). By Corollary 3.9, the set T�K pByq is included in the cylinder

C � rx0, . . . , xn�1, zn, . . . , zm, xm�1sm�2,

which implies that B � T�KpByq X Bz has positive measure. Indeed, if B were a null set,
the cylinder C would contain two subsets T�KpByq and Bz of negligeable intersection and we
would get µpCq ¡ 2p1� εqµpCq by de�nition of En,m, this is not possible since ε ¤ 1{2.

Then we have gλpTKxq � λKgλpxq for almost every x P B, and since every x P B is in A
and satis�es TKx P A, we get |1� λK |   ε using (2).
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Lemma 3.12. Let 0   ε   2 and θ � θpεq ¡ 0 such that

tν P T | |1� ν|   εu � texp p2iπτq | �θ   τ   θu.

Let ν P Tzt1u satisfying |1 � ν|   ε. We write it as ν � exp p2iπτq with �θ   τ   θ, τ �� 0.
If ε is small enough so that θ   1{4, then for every interval13 J of Z, we have

¸
jPJ

1|1�νj | ε ¤
3θ

1� 2θ
|J | � 6θ

|τ | .

Proof of Lemma 3.12. Without loss of generality, we assume that τ is positive. Let J be an
interval of Z. If we have ¸

jPJ

1|1�νj | � 0,

then the result is clear. Now we assume that there exists j P J such that |1� νj |   ε. Since ν
is not equal to 1, this implies that we have |1� νk|   ε for in�nitely many integers k. Since θ
is less than 1{4, we also have |1� νk| ¥ ε for in�nitely many integers k. Therefore we can �nd
sequences pnℓqℓPZ and pmℓqℓPZ of integers such that nℓ   mℓ   nℓ�1   mℓ�1 for every ℓ P Z,
so that we can write

Z � . . .\ C�2 \D�2 \ C�1 \D�1 \ C0 \D0 \ C1 \D1 \ . . .

with intervals Cℓ � tk P Z | nℓ ¤ k   mℓu and Dℓ � tk P Z | mℓ ¤ k   nℓ�1u such that

@k P Cℓ, |1� νk|   ε and @k P Dℓ, |1� νk| ¥ ε.

For every ℓ P Z, we have

pmℓ � nℓ � 1qτ   2θ   pmℓ � nℓ � 1qτ

and pnℓ�1 �mℓ � 1qτ ¥ 1� 2θ,

this implies
2θ

τ
� 1   |Cℓ|   2θ

τ
� 1

and |Dℓ| ¥ 1� 2θ

τ
� 1.

Now we set ℓ0 � max tℓ P Z | nℓ ¤ min Ju and ℓ1 � max tℓ P Z | nℓ ¤ max Ju. We then have
the inclusion

�
ℓ0�1¤ℓ¤ℓ1�1 pCℓ \Dℓq � J which yields

|J | ¡ pℓ1 � ℓ0 � 1q
�
1

τ
� 2



.

13By an interval of Z, we mean a set of the form tk P Z | a ¤ k ¤ bu for some integers a and b.
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Finally, we have

¸
jPJ

1|1�νj | ε ¤
ℓ1̧

ℓ�ℓ0

|Cℓ|

¤ pℓ1 � ℓ0 � 1q
�
2θ

τ
� 1




¤
�

2θ
τ � 1
1
τ � 2

�
|J | � 2

�
2θ

τ
� 1




¤
�

2θ
τ � θ

τ
1
τ � 2 θτ

�
|J | � 2

�
2θ

τ
� θ

τ



since 1 ¤ θ

τ

� 3θ

1� 2θ
|J | � 6θ

τ

and we are done.

Theorem 3.13. Let T be an odomutant built from the odometer S on X �±
n¥0 t0, . . . , qn � 1u.

Then T and S have the same point spectrum.

Using the Halmos-von Neumann theorem [HVN42], we get the following corollary.

Corollary 3.14. Let T be an odomutant built from the odometer S on X �±
n¥0 t0, . . . , qn � 1u.

If T is conjugate to an odometer, then T is conjugate to S.

Proof of Theorem 3.13. Since T factors onto S, we already know that SppSq � SppT q. Let λ
be an eigenvalue of T . Let us show that this is an eigenvalue of S. Let ε ¡ 0 small enough so
that θ   1{4 and 3θ

1�2θ ¤ 1{4, with θ � θpεq introduced in Lemma 3.12. We also assume that

ε ¤ 1{2. Let n be a positive integer given by Lemma 3.11 for the eigenvalue λ, and ν � λhn .
If ν � 1, we are done.

Now assume ν �� 1. Let us choose a su�ciently large enough integer m so that m ¥ n
and 6θ

τqn...qm
¤ 1

4 . We consider a set En,m � ±m
j�n t0, . . . , qj � 1u and an integer xm�1 P

t0, . . . , qm�1 � 1u satisfying

�

|En,m|
qnqn�1 . . . qm

¡ 1� ε;

� for every y � pyn, . . . , ymq, z � pzn, . . . , zmq P En,m, we have���1� νHpyq�Hpzq
���   ε,

where H :
±m
j�n t0, . . . , qj � 1u Ñ t0, . . . , qn . . . qm � 1u is de�ned by

H : y � pyn, . . . , ymq ÞÑ
m̧

j�n

hj
hn
σpjqyj�1

pyjq with ym�1 � xm�1.

The existence of En,m and xm is granted by Lemma 3.11. Since ε ¤ 1{2 and H is a bijection,
there exists two di�erent elements y and z in En,m such that Hpyq �Hpzq � 1. This implies

|1� ν|   ε.
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Let us �x z P En,m and set

J �
#
Hpyq �Hpzq | y P

m¹
j�n

t0, . . . , qj � 1u
+
.

By Lemma 3.12, we have¸
jPJ

1|1�νj | ε ¤
3θ

1� 2θ
|J | � 6θ

|τ | ¤
qn . . . qm

2

and we get a contradiction since we have¸
jPJ

1|1�νj | ε ¥ |En,m| ¡ p1� εqqn . . . qm

with ε ¤ 1{2. Thus we have λhn � 1.

3.4 Orbit equivalence between odometers and odomutants

In this section, we prove that an odomutant and its associated odometer have the same orbits.
Moreover, given a non-decreasing map φ : R� Ñ R�, we give su�cient conditions for the
cocycles to be φ-integrable.

Proposition 3.15. For all x P ψ�1pX�
8q, we have Tx � ScT pxqx where the integer cT pxq is

de�ned by

cT pxq �
N1̧

i�0

hipyipxq � xiq (4)

with N1 � N�pψpxqq and y0, . . . , yN1pxq inductively de�ned by

yN1pxq�
�
σpN1q
xN1�1

	�1
pσpN1q
xN1�1

pxN1q � 1q,

@ 0 ¤ i ¤ N1 � 1, yipxq�
�
σ
piq
yi�1pxq

	�1
p0q.

For all x P X�
8, let us de�ne the integer cSpxq by:

cSpxq � hN2

�
σpN2q
xN2�1

p1� xN2q � σpN2q
xN2�1

pxN2q
	

� hN2�1

�
σ
pN2�1q
1�xN2

p0q � σpN2�1q
xN2

pxN2�1q
	

�
N2�2¸
i�0

hi

�
σ
piq
0 p0q � σpiqxi�1

pxiq
	 (5)

with N2 � N�pxq. Then we have Sx � T cSpxqx for every x P X�
8.

Proof of Proposition 3.15. For x P ψ�1pX�
8q, the value of cT pxq follows from the computations

before De�nition 3.2. For x P X�
8 and N2 � N�pxq, we have

x � pq0 � 1, . . . , qN2�1 � 1, xN2loomoon
��qN2

�1

, xN2�1, xN2�2, . . .q

and Sx � p0, . . . , 0, 1� xN2 , xN2�1, xN2�2, . . .q
so the second result is clear by Corollary 3.9.
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Theorem 3.16. The map Ψ � idX is an orbit equivalence between T and S. Moreover,

given an non-decreasing map φ : R� Ñ R�, this orbit equivalence is φ-integrable if one of the

following two conditions is satis�ed:

(C1) the series
° φphn�1q

hn
converges;

(C2) the series

¸
n¥0

1

hn�2

¸
0¤xn qn,

0¤xn�1 qn�1,

σ
pnq
xn�1

pxnq��qn�1

φ

�
hn

�
1�

�����σpnqxn�1

	�1
pσpnqxn�1

pxnq � 1q � xn

����




and
¸
n¥0

1

hn�2

¸
0¤xn¤qn�2,
0¤xn�1 qn�1

φ
�
hn

�
1�

���σpnqxn�1
p1� xnq � σpnqxn�1

pxnq
���		

converge.

As we notice in the next proof, we need coarse bounds to get that Condition (C1) implies
φ-integrably orbit equivalence, whereas Condition (C2) is a �ner hypothesis. For Theorem D,
Condition (C2) will enable us to exploit the sublinearity of the map φ, and Condition (C1)
will be enough for Theorems A and C.

Proof of Theorem 3.16. By Proposition 3.15, the set of points x P X satisfying Tx � ScT pxqx
and Sx � T cSpxqx for integers cT pxq and cSpxq de�ned by (4) and (5) have full measure, so
the map idX is an orbit equivalence between S and T .

The value of cT pxq gives the following bound:

|cT pxq| ¤ hN1

�����σpN1q
xN1�1

	�1
pσpN1q
xN1�1

pxN1q � 1q � xN1

�����
N1�1¸
i�0

hi |yipxq � xi|loooooooooomoooooooooon
¤hN1

(6)

with N1 � N�pψpxqq. Given n ¥ 0, zn P t0, . . . , qn � 1u and zn�1 P t0, . . . , qn�1 � 1u such

that σ
pnq
zn�1pznq �� qn � 1, we have

µptx P X | N�pψpxqq � n, xn � zn, xn�1 � zn�1uq � 1

hn�2
.

We �nally get»
X
φp|cT pxq|qdµpxq �

¸
n¥0

¸
0¤zn qn,

0¤zn�1 qn�1,

σ
pnq
zn�1

pznq��qn�1

»
N�pψpxqq�n,

xn�zn,
xn�1�zn�1

φp|cT pxq|qdµpxq

¤
¸
n¥0

1

hn�2

¸
0¤zn qn,

0¤zn�1 qn�1,

σ
pnq
zn�1

pznq��qn�1

φ

�
hn

�
1�

�����σpnqzn�1

	�1
pσpnqzn�1

pznq � 1q � zn

����




.
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From Inequality (6), we also get |cT pxq| ¤ hN1�1 and the following coarser bound:»
X
φp|cT pxq|qdµpxq �

¸
n¥0

¸
0¤zn qn,

0¤zn�1 qn�1,

σ
pnq
zn�1

pznq��qn�1

»
N�pψpxqq�n,

xn�zn,
xn�1�zn�1

φp|cT pxq|qdµpxq

¤
¸
n¥0

1

hn�2

¸
0¤zn qn,

0¤zn�1 qn�1,

σ
pnq
zn�1

pznq��qn�1

φ phn�1q

¤
¸
n¥0

1

hn
φphn�1q.

For the other cocycle, we have

|cSpxq| ¤ hN2

���σpN2q
xN2�1

p1� xN2q � σpN2q
xN2�1

pxN2q
���

� hN2�1

���σpN2�1q
1�xN2

p0q � σpN2�1q
xN2

pxN2�1q
���� N2�2¸

i�0

hi

���σpiq0 p0q � σpiqxi�1
pxiq

���looooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooon
¤hN2

.

with N2 � N�pxq. Moreover it is easy to get

µptx P X | N�pxq � n, xn � zn, xn�1 � zn�1uq � 1

hn�2

for every n ¥ 0, zn P t0, . . . , qn � 2u and zn�1 P t0, . . . , qn�1 � 1u. Thus we �nd a bound on
the φ-integral of cS with the same method as cT .

3.5 Extension to a homeomorphism on the Cantor set, strong orbit equiv-

alence

We move on to a topological viewpoint. We give a su�cient condition for an odomutant to
have an extension to a homeomorphism. It turns out that in this case the orbit equivalence
that we obtained in the last section is a strong orbit equivalence.

Proposition 3.17. Assume that σ
pnq
i p0q � 0 and σ

pnq
i pqn � 1q � qn � 1 for every n ¥ 0 and

every 0 ¤ i ¤ qn � 1. Then the odomutant T admits a unique extension, also denoted by

T , which is a homeomorphism on the whole compact set X � ±
n¥0 t0, 1, . . . , qn � 1u. It is

furthermore strongly orbit equivalent to the associated odometer S. In particular, it follows

from Proposition 2.20 that T is uniquely ergodic.

Remark 3.18. In this case, the equality S � ψpxq � ψ � T pxq holds for all x P X.

Proof of Proposition 3.17. Since, for every n ¥ 0, the points 0 and qn � 1 are �xed by the
n-th permutations, x� is the only point x P X satisfying ψpxq � x� and x� is the only point
x P X satisfying ψpxq � x�. This implies that we have

ψ�1pX�
8q � X�

8 � Xztx�u and ψ�1pX�
8q � X�

8 � Xztx�u,
and T is a bijection from Xztx�u to Xztx�u, so we set Tx� � x�. The map T : X Ñ X is
now a well-de�ned bijection.
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The odometer S and the maps ψn are continuous on X so it is not di�cult to see that T
is continuous on each point of Xztx�u. It is easy to check the equality T prq0 � 1, . . . , qn �
1sn�1q � r0, . . . , 0sn�1, so the continuity at x� is clear. Therefore T : X Ñ X is continuous
and invertible, where X is a Haussdorf compact space, so T is a homeomorphism.

By Proposition 3.15, we have Tx � ScT pxqx and Sx � T cSpxq for every x P X�
8, with cT pxq

and cSpxq de�ned by (4) and (5). These relations are extended at x�, with cT px�q � cSpx�q �
1. Thus S and T have the same orbits and it is clear that the cocycles are continuous on X�

8

(x� is the only point of discontinuity if the cocycles are not continuous).14

4 On non-preservation of loose Bernoullicity property under

L 1{2 orbit equivalence

In this section, we prove that L 1{2 orbit equivalence (in particular Shannon orbit equivalence)
does not imply even Kakutani equivalence.

Theorem 4.1. There exists an ergodic probability measure-preserving bijection T which is

L 1{2 orbit equivalent (in particular Shannon orbit equivalent) to the dyadic odometer but not

evenly Kakutani equivalent to it.

Feldman [Fel76] has built a zero-entropy system which is not loosely Bernoulli. In his
construction, for some partition that we will specify, the elements in r0, . . . , 0sn produce words,
describing the future, which are not pairwise f -close for the f -metric introduced in Section 2.4
(therefore, the underlying system is not loosely Bernoulli). The goal is to describe his system
as an odomutant built from the dyadic odometer and permutations that we are going to de�ne.
These permutations will �x 0, so that we will be able to read the words produced by the points
at the bottom of the towers (using Lemmas A.1 and A.3), with respect to the partition that
we will consider.

Let us set q̃n � 2n�10, qn � pq̃nq2q̃n�1�3 and cn �
qn
q̃n
� pq̃nq2q̃n�1�2 for every n ¥ 0, h0 � 1

and hn�1 � qnhn. We inductively de�ne words a
pnq
i (we keep the notations of Feldman in his

paper) for every n ¥ 0 and every i P t0, . . . , q̃n � 1u. Let us start with q̃0 di�erent letters

a
p0q
0 , . . . , a

p0q
q̃0�1 seen as words of length h0 � 1. For n ¥ 0, if words a

pnq
0 , . . . , a

pnq
q̃n�1 of length hn

have been set, then we de�ne new words a
pn�1q
0 , . . . , a

pn�1q
q̃n�1�1, of length hn�1, by

a
pn�1q
j �

A
xapnq0 ypq̃nq2pj�1qxapnq1 ypq̃nq2pj�1q

. . . xapnqq̃n�1ypq̃nq
2pj�1q

Epq̃nq2pq̃n�1�jq

,

where xwyk denotes the concatenation of k copies of a word w.

For j P t0, 1, . . . , q̃n�1�1u, τ pnqj is a permutation of the set t0, 1, . . . , qn�1u which permutes
the entries of the �nite sequence

u� papnq0 , . . . , a
pnq
0loooooomoooooon

cn times

, a
pnq
1 , . . . , a

pnq
1loooooomoooooon

cn times

, . . . , a
pnq
q̃n�1, . . . , a

pnq
q̃n�1looooooooomooooooooon

cn times

q

so that the concatenation gives a
pn�1q
j , namely τ

pnq
j satis�es

a
pnq
j � u

τ
pnq
j p0q

� u
τ
pnq
j p1q

� . . . � u
τ
pnq
j pqn�1q

.

14We can notice that we have tTnx� | n P Nu � tSnx� | n P Nu and tT�nx� | n P Nu � tS�nx� | n P Nu.
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We now consider the odomutant T associated to the odometer S on the spaceX �±
n¥0 t0, 1, . . . , qn � 1u,

and built with uniformly c-multiple permutations τ
pnq
j where c� pcn, q̃nqn¥0.

In view of the cutting-and-stacking construction behind the de�nition of this odomutant,
we can be convinced that T is isomorphic to the non Bernoulli system built by Feldman.
However we give more details on the fact that T is not loosely Bernoulli, based on the justi�-
cations of Feldman. Given n ¥ 0, Lemmas A.1 and A.3 in Appendix A imply that the words
rP̃p1qshnpxq for x P r0, . . . , 0sn (i.e. the points x at the bottom of the towers at step n) exactly

correspond to the words a
pnq
0 , . . . , a

pnq
q̃n�1. As in [Fel76], the properties we are interested in can

be deduced purely from this fact. Indeed, given any point x not necessarily at the bottom

of the towers at step n, the word rP̃p1qshnpxq is the concatenation of the tail of some a
pnq
i

and the beginning of some a
pnq
j , and this observation leads us to apply the same reasoning as

in [Fel76, Step III and Step V in p. 36] to conclude that T has zero entropy and pT, P̃p1qq is
not loosely Bernoulli using the caracterisation provided by Theorem 2.8. Therefore T is not
loosely Bernoulli.

Proof of Theorem A. Let S be the odometer on X � ±
n¥0 t0, 1, . . . , qn � 1u (so S is loosely

Bernoulli) and T the odomutant described above, which is not loosely Bernoulli, so that S
and T are not evenly Kakutani equivalent by the theory of Ornstein, Rudolph and Weiss (see
Theorem 2.9). Note that S is the dyadic odometer since the integers qn are powers of 2.

Let us prove that S and T are L 1{2 orbit equivalent, using Condition (C1) of Theorem 3.16.
Let us �x a real number p satisfying 0   p   1{2. We have

hn � hn�1q̃
2q̃n�3
n�1 � hn�12

pn�9qp2n�11�3q

and this gives hn � 2Sn with

Sn �
ņ

i�1

pi� 9qp2i�11 � 3q � Cn2n �D2n � op2nq

for some positive constants C and D. For a �xed constant C 1 P rC, C2p s and for a su�ciently
large integer n, we have

Cn2n   Sn   C 1n2n,

this gives

hn   2C
1n2n �

�
2Cpn�1q2n�1

	2C1

C
2C

12n   �
2Sn�1

�2C1

C 2C
12n � phn�1q2

C1

C 2C
12n

and
hn

p

hn�1
  phn�1q2

C1

C
p�12C

1p2n  
�
2C

1pn�1q2n�1
	2C1

C
p�1

2C
1p2n .

Since we have 2C
1

C p   1, the series
° φphnq

hn�1
converges for φpxq � xp, so we are done by

Theorem 3.16.

5 On non-preservation of entropy under orbit equivalence with

almost log-integrable cocycles

In this section, we prove that orbit equivalence with almost log-integrable cocycles does not
preserve entropy. The statement is actually stronger, with a topological framework:
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Theorem 5.1. Let α be either a positive real number or �8. Let S be an odometer whose

associated supernatural number
±
pPΠ p

kp satis�es the following property: there exists a prime

number p� such that kp� � �8. Then there exists a Cantor minimal homeomorphism T such

that

1. htoppT q � α;

2. there exists a strong orbit equivalence between S and T , which is φm-integrable for all

integers m ¥ 0,

where φm denotes the map tÑ log t

logp�mq t
and logp�mq the composition log � . . . � log (m times).

We will crucially use the combinatorial lemmas stated in Appendix A. The cases α   �8
and α � �8 will be in fact separated, but in both proofs, we will apply the following lemma
which will be useful for the quanti�cation of the cocycles.

Lemma 5.2. Let pqnqn¥0 be a sequence of integers greater than or equal to 2, and let β ¡ 0
such that

lim inf
nÑ�8

log qn
hn

¥ β

where hn � q0 . . . qn�1. Then, for every integer m ¥ 0, we have

1

log�mpqn�mq ¤ exp p�βhnq

for all su�ciently large integers n. In particular, the sequence
�

1
log�mpqnq

	
n¥0

is summable.

Proof of Lemma 5.2. Let us consider an integer N such that

@n ¥ N, βhn ¥ 1.

For every n ¥ N , we have

log qn�1 ¥ βhn�1 � qn � βhn ¥ qn.

By induction, we easily get for every n ¥ N ,

log�mpqn�mq ¥ qn,

so we have log�mpqn�mq ¥ exp pβhnq.
Before the proof of Theorem 5.1 in the case α   �8, we need two preliminary lemmas.

The �rst one (Lemma 5.3) provides permutations so that we can easily compute the entropy
of the underlying odomutant. The second one (Lemma 5.5) proves that the formula given by
Lemma 5.3 enables us to get all possible �nite values of the entropy with a proper choice of
parameters.

Lemma 5.3. Let pqnqn¥0 be a sequence of integers greater than or equal to 2 and satisfying

qn�1 ¤ pqn�2q!. Then there exist permutations σ
pnq
xn�1 , for n ¥ 0 and xn�1 P t0, . . . , qn�1�1u,

satisfying the following properties:

1. for every n ¥ 0, the maps σ
pnq
0 , σ

pnq
1 , . . . , σ

pnq
qn�1�1 are pairwise di�erent permutations of

the set t0, . . . , qn � 1u, �xing 0 and qn � 1;
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2. the topological entropy of the underlying odomutant is equal to

lim
nÑ�8

log qn
hn

.

Remark 5.4. The entropy htoppT q is well-de�ned by Lemma 3.17, as well as the limit lim log qn
hn

.

Indeed, the sequence
�
log qn
hn

	
n¥0

is decreasing since we have qn   pqn�1qqn�1 .

Proof of Lemma 5.3. By Lemma A.6 in Appendix A, we can choose permutations satisfying
the �rst item and such that the following hold for every n ¥ ℓ ¥ 1:

qn ¤ NpPpℓqhn�1
0 q ¤ hn�1qnq

2
n�12

qn�1 .

On the one hand, we have

htoppT q ¥ htoppT,Pp1qq � lim
nÑ�8

logNpPp1qhn�1
0 q

hn
¥ lim

nÑ�8

log qn
hn

.

On the other hand, this gives

htoppT,Ppℓqq � lim
nÑ�8

logNpPpℓqhn�1
0 q

hn

¤ lim
nÑ�8

log hn�1 � log qn � 2 log qn�1 � qn�1 log 2

hn

� lim
nÑ�8

log qn
hn

and we �nally get, using Theorem 2.2,

htoppT q � lim
ℓÑ�8

htoppT,Ppℓqq ¤ lim
nÑ�8

log qn
hn

.

Hence the result.

Lemma 5.5. Let α be a positive real number and
±
pPΠ p

kp a supernatural number. We assume

that there exists a prime number p� such that kp� � �8. Then there exists a sequence pqnqn¥0

of integers greater than or equal to 2, satisfying the following properties:

1. we have qn�1 ¤ pqn � 2q! for every n ¥ 0;

2. the sequence
�

log qn
q0...qn�1

	
n¥0

tends to α;

3. we have
°
n¥0 νppqnq � kp for every p P Π.

Proof of Lemma 5.5. Let K be a large enough power of p� so that the following property
holds: for every integer q satisfying q ¥ K, we have pq � 2q! ¥ K. Let

N �
¸

pPΠztp�u

kp P NY t�8u

and ppiq1¤i¤N be a sequence of prime numbers satisfying
°

1¤i¤N 1pi�p � kp for every p P
Πztp�u, and

°
1¤i¤N 1pi�p� � 0.15 By induction, we build a sequence pqnqn¥0 of integers

greater than or equal to 2, an increasing sequence pinqn¥0 and a non-decreasing sequence
pjnqn¥0 of non-negative integers, satisfying the following properties:

15"ppiqi¥1" and "
°

i¥1" in the case N � �8.
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1. q0 ¡ 2
α log p� and log q0 ¥ α� 5;

2. K ¤ qn�1 ¤ pqn � 2q! for every n ¥ 0;

3. for every n ¥ 1, the following holds:

α� 5

q0 . . . qn�1
¤ log qn
q0 . . . qn�1

¤ α� 2

q0 . . . qn�2
,

where q0 . . . qn�2 is equal to 1 if n � 1;

4. qn � Kin

jn¹
j�jn�1�1

pj for every n ¥ 0, with j�1 � j0 � 0 (so we have q0 � pi0� q;

5. jn Ñ
nÑ8

N if N   �8, jn Ñ
nÑ8

�8 otherwise.

Such a sequence pqnqn¥0 satis�es the assumptions of the lemma.
We choose a large enough integer i0 such that the hypotheses on q0 � Ki0 are satis�ed.

Let n ¥ 0. Assume that the integers q0, . . . , qn, i0, . . . , in, j1, . . . , jn have been de�ned and let
us build qn�1, in�1, jn�1. In particular, the integers q0, . . . , qn satisfy

@k P t0, . . . , nu, log qk
q0 . . . qk�1

¥ α� 5

q0 . . . qk�1
.

Let jn�1 be the greatest integer k satisfying

� k ¥ jn and, if N   �8, k ¤ N ;

� K
k¹

j�jn�1

pj ¤ pqn � 2q!;

�

log
�±k

j�jn�1 pj

	
q0 . . . qn

¤ α

2
.

Let us consider the sequence pαiqi¥1 de�ned by

αi �
log

�
Ki

±jn�1

j�jn�1 pj

	
q0 . . . qn

,

and let I be the greatest integer i such that Ki
±jn�1

j�jn�1 pj ¤ pqn � 2q!. The sequence pαiqi¥1

is an arithmetic progression with common di�erence

logK

q0 . . . qn
.

Moreover, we have

α1 ¤ logK

q0
�

log
�±jn�1

j�jn�1 pj

	
q0 . . . qn

¤ α,
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and, using the assumption on qn and the inequalities log pk!q ¥ k log pkq � k and log k ¤ k,

αI�1 �
log

�
KI�1

±jn�1

j�jn�1 pj

	
q0 . . . qn

¥ log ppqn � 2q!q
q0 . . . qn

� log pqn!q
q0 . . . qn

� log pqn � 1q
q0 . . . qn

� log pqnq
q0 . . . qn

¥ qn log pqnq � qn
q0 . . . qn

� log pqn � 1q
q0 . . . qn

� log pqnq
q0 . . . qn

¥ log pqnq
q0 . . . qn�1

� 3

q0 . . . qn�1

¥ α� 2

q0 . . . qn�1
.

Therefore, there exists i1 P t1, . . . , Iu such that

α� 2

q0 . . . qn�1
� logK

q0 . . . qn
¤ αi1 ¤ α� 2

q0 . . . qn�1
.

Since we have 2qn ¥ 2K ¥ K � logK ¥ 5� logK, we get

α� 5

q0 . . . qn
¤ αi1 ¤ α� 2

q0 . . . qn�1
.

It remains to set in�1 � i1 and qn�1 � Kin�1
±jn�1

j�jn�1 pj .
Finally, we have to check that the increasing sequence pjnqn¥1 of integers diverges if N �

�8, or converges to N if N is �nite. If it was not the case, then there would exist a positive
integer n such that the following hold for every k ¥ n:

Kpjn�1 ¡ pqk � 2q! or log pjn�1

q0 . . . qk
¡ α

2
.

But the integers qk are greater than or equal to 2, so it would mean that the sequence pqkqk¥0

is bounded, which is in contradiction with the inequality log qk ¥ αq0 . . . qk, so pjnqn¥1 satis�es
the desired property. Hence the lemma.

Proof of Theorem C in the case α   �8. Let α be a positive real number and let S be an
odometer whose associated supernatural number

±
pPΠ p

kp satis�es the following property:
there exists a prime number p� such that kp� � �8. Without loss of generality, S is the
odometer on the Cantor set X �

±
n¥0 t0, 1, . . . , qn � 1u, where the sequence pqnqn¥0 satis�es

2 ¤ qn ¤ pqn� 2q! for every n ¥ 0 and log qn
hn

Ñ α. The existence of such a sequence is granted
by Lemma 5.5. By Lemma 5.3 and Proposition 3.17, we can �nd families of permutations such
that the underlying odomutant T is a homeomorphism strongly orbit equivalent to S and its
topological entropy is equal to α.

Finally, given an increasing map φ : R� Ñ R�, the orbit equivalence is φ-integrable if
pφphn�1q{hnqn is summable, by Theorem 3.16 (see Condition (C1)). This holds for φpxq �
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logpxq
log�mpxq . Indeed, we have

φphn�1q
hn

� 1

log�mphn�1q
log phn�1q

hn

¤ 1

log�mpqnq
�
log phnq
hn

� log qn
hn




¤ 1

log�mpqnq
�
1� log qn

hn



,

so using the monotonicity of the sequence
�
log qn
hn

	
n¥0

(see Remark 5.4), we get

φphn�1q
hn

¤ 1

log�mpqnqp1� log q0q

and we are done by Lemma 5.2 with β � α.

In the case α � �8, we prove Theorem C with the same methods as in [BH94], but
with our formalism. We will consider an odomutant T on

±
n¥0 t0, 1, . . . , qn � 1u, built with

uniform c-multiple permutations τ
pnq
j , where c � pcn, q̃nqn¥0, and for every n ¥ 0 and every

0 ¤ j   q̃n�1, τ
pnq
j is a permutation on t0, 1, . . . , qn � 1u �xing 0 and qn � 1. For every n ¥ 0,

we assume that the map

j P t0, 1, . . . , q̃n�1 � 1u ÞÑ pτ pnqj pIpnq0 q, . . . , τ pnqj pIpnqq̃n�1qq

is κn�1-to-one for some positive integer κn�1 (as in the assumption of Lemma A.4). Finally,
we write χn �

q̃n
κn

for every n ¥ 1. Then we have qn � cnq̃n for every n ¥ 0 and q̃n � κnχn
for every n ¥ 1. The sequences phnq, pq̃nq, pcnq, pκnq, pχnq respectively correspond to the
sequences plkq, pmkq, pnkq, pjkq, pmkq in [BH94]. The integer χn�1 is the number of sequences

of the form pτ pnqj pIpnq0 q, . . . , τ pnqj pIpnqq̃n�1qq for j P t0, . . . , q̃n�1 � 1u, so we have

1 ¤ χn�1 ¤ pqn � 2q!
cn!q̃n�2pcn � 1q!2 ,

thus motivating the following lemma.

Lemma 5.6. Let p, q̃ and c be positive integers and q � q̃c. Assume that p ¥ 2 and q ¥ 3.
Then the greatest power of p less than or equal to

pq � 2q!
c!q̃�2pc� 1q!2

is greater than or equal to

1

p

1

q̃2

�
1

ec


q̃
q̃q.

Proof of Lemma 5.6. Using the inequalities

�
k

e


k
¤ k! ¤ e

�
k � 1

e


k�1

,
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we get

pq � 2q!
c!q̃�2pc� 1q!2 �

c2

qpq � 1q
q!

pc� 1q!q̃
1

cq̃
¥

�
c

q


2
�
q
e

�q
eq̃
�
c
e

�cq̃ 1

cq̃
� 1

q̃2

�
1

ec


q̃
q̃q

and we are done.

Proof of Theorem C in the case α � �8. Let

N �
¸

pPΠztp�u

kp P NY t�8u

and ppiq1¤i¤N be a sequence of prime numbers satisfying
°

1¤i¤N 1pi�p � kp for every p P
Πztp�u, and

°
1¤i¤N 1pi�p� � 0.16 Let us de�ne cn � pn� for every n ¥ 0. By induction, we

build sequences pκnqn¥1 and pχnqn¥0 of integers, and a non-decreasing sequence pjnqn¥1 of
non-negative integers, satisfying the following properties:

1. for every n ¥ 0, χn�1 is the greatest power of p� less than or equal to pqn�2q!
cn!q̃n�2pcn�1q!2

,

where q̃n � κnχn (with κ0 � 1) and qn � cnq̃n;

2. κn � phn�

jn¹
j�jn�1�1

pj for every n ¥ 1, with j0 � 0;

3. jn Ñ
nÑ8

N if N   �8, jn Ñ
nÑ8

�8 otherwise.

Let us de�ne q̃0 � p�. Given n ¥ 0, assume that χ0, . . . , χn, j0, . . . , jn, κ1, . . . , κn have been
set (if n � 0, then there is no integer κi). We de�ne χn�1 as the greatest power of p� less than

or equal to pqn�2q!
cn!q̃n pcn�1q!2

, jn�1 as the greatest integer k satisfying

� jn ¤ k and, if N   �8, k ¤ N ;

�

±k
j�jn�1 pj ¤ p

hn�1
� ,

and κn�1 � p
hn�1
�

±jn�1

j�jn�1 pj . Let us de�ne T as the odomutant built with uniform c-multiple

permutations τ
pnq
j , with c � pcn, q̃nqn¥0, and assume that the assumption of Lemma A.4 in

Appendix A is satis�ed: for every n ¥ 0, the map

j P t0, 1, . . . , q̃n�1 � 1u ÞÑ pτ pnqj pIpnq0 q, . . . , τ pnqj pIpnqq̃n�1qq

is κn�1-to-1. Note that the fact that χn�1 is less than or equal to

pqn�1 � 2q!
cn�1!q̃n�1pcn�1 � 1q!2

enables us to �nd such families of permutations. It is straightforward to prove that jn Ñ �8
if N � 8, or jn Ñ N if N   �8, so T is an odomutant associated to S.

Lemma A.4 implies

NpP̃pℓqhn�1
0 q ¥ q̃n±n

k�ℓ κ
hn{hk
k

16"ppiqi¥1" and "
°

i¥1" in the case N � �8.
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for all n ¥ ℓ ¥ 1. By Lemma 5.6, we have for every i ¥ 1,

q̃i � κiχi ¥ κi
1

p�

1

pq̃i�1q2
�

1

eci�1


q̃i�1

pq̃i�1qqi�1 ,

this gives

q̃
1{hi
i ¥ κ

1{hi
i

�
1

p�q̃2i�1


1{hi
�

1

eci�1


1{pci�1hi�1q

q̃
1{hi�1

i�1

and we can apply this inequality many times to get

q̃1{hnn ¥
�

n¹
i�1

κ
1{hi
i

��
n¹
i�1

�
1

p�q̃2i�1


1{hi
�

1

eci�1


1{pci�1hi�1q
�
q̃0

¥
�

n¹
i�ℓ

κ
1{hi
i

��
n¹
i�1

�
1

p�q̃2i�1


1{hi
�

1

eci�1


1{pci�1hi�1q
�
pℓ�1
� q̃0.

Hence we have,

logNpP̃pℓqhn�1
0 q

hn
¥ pℓ� 1q log p� � log q̃0 �

ņ

i�1

�
log pp�q̃2i�1q

hi
� log peci�1q

ci�1hi�1



.

It is straightforward to check that the series
°�8
i�1

�
log pp�q̃2i�1q

hi
� log peci�1q

ci�1hi�1

	
converges and we

denote by V its value. We are now able to get that T has in�nite topological entropy:

htoppT q ¥ lim
ℓÑ�8

htoppT, P̃pℓqq ¥ lim
ℓÑ�8

ppℓ� 1q log p� � log q̃0 � V q � �8.

Let us �nally check Condition (C1) in Lemma 3.16 to prove that there exists a strong
orbit equivalence between T and S, which is φm-integrable for every m ¥ 0, where φmpxq �

logpxq

logp�mqpxq
. We �rst have cn ¤ pp�qhn , χn ¤ pqn�1qqn�1 ¤ phnqqn�1 and log κn ¤ 2hn log p� by

de�nition, so

log hn�1 � log hn � log cn � log κn � logχn ¤ p1� 3 log p�qhn � qn�1 log hn,

this implies
log hn�1

hn
¤ p1� 3 log p�q � log hn

hn�1

and we get log hn�1

hn
� Opnq. Then, it remains to prove that the sequence

�
n

logp�mqphn�1q

	
n¥0

is

summable. This is a consequence of Lemma 5.2 with β � log p�, since we have

log qn ¥ log κn ¥ hn log p�

by de�nition of κn. So there exists a strong orbit equivalence between T and S, which is
φm-integrable for every m ¥ 0.
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6 Orbit equivalence with almost integrable cocycles

In this section, we prove that being orbit equivalent to an odometer, with almost integrable
cocycles, does not imply being �ip-conjugate to it.

Theorem 6.1. Let φ : R� Ñ R� be a sublinear map and S an odometer. There exists a proba-

bility measure-preserving transformation T such that S and T are φ-integrably orbit equivalent
but not �ip-conjugate.

For Theorems A and C, some invariants (loose Bernoullicity property, entropy) ensure
that we build an odomutant T which is not �ip-conjugate to the associated odometer S. For
Theorem 6.1, we use the fact that every odometer is coalescent (see Theorem 2.14). Given a

sublinear map φ : R� Ñ R�, the goal is to �nd families of permutations
�
σ
pnq
xn�1

	
0¤xn�1 qn�1

,

for n ¥ 0, such that the factor map

ψ : x P X Ñ pσp0qx1 px0q, σp1qx2 px1q, σp2qx3 px2q, . . .q P X

from the associated odomutant T to S is not an isomorphism, with φ-integrable cocycles for
the orbit equivalence between S and T .

Lemma 6.2. Let pqnqn¥0 be a sequence of integers greater or equal to 2. For every n ¥ 0, let�
σ
pnq
xn�1

	
0¤xn�1 qn�1

be a family of permutations of the set t0, 1, . . . , qn � 1u, de�ned by:

@xn�1 P t0, . . . , qn�1 � 1u, @i P t0, . . . , qn � 1u, σpnqxn�1
piq � i� xn�1 mod qn.

Assume that the in�nite product
±
n¥0

�
1� 1

qn

	
converges17. Then ψ : x P X Ñ pσpnqxn�1pxnqqn¥0 P

X is not injective almost everywhere.

Proof of Lemma 6.2. Let Y1 � tx P X | @n ¥ 0, xn �� pqn � 1q1n is evenu and Y2 � tx P X |
@n ¥ 0, xn �� pqn � 1q1n is oddu. It is straightforward to check that

µpY1q � µpY2q �
¹
n¥0

�
1� 1

qn



¡ 0.

Let θ : X Ñ X de�ned by:

θpxq� pxn � p�1qn mod qnqn¥0.

The map θ is in AutpX,µq since X can be seen as the compact group
±
n¥0 Z{qnZ, with its

Haar probability measure µ and θ as the translation by pp�1qnqn¥0. Moreover, θ is a bijection
from Y1 to Y2 and we have ψpθpxqq � ψpxq for all x P Y1.

Let us prove by contradiction that ψ is not injective almost everywhere. Assume that ψ is
injective on a measurable set X0 of full measure. This hypothesis and the equality ψ � θ � ψ
on Y1 imply that the sets X0 and θpX0 X Y1q are disjoint. This �nally gives

µppX0qcq ¥ µ pθpX0 X Y1qq � µpX0 X Y1q � µpY1q ¡ 0

and we get a contradiction since pX0qc has zero measure.

17By de�nition, the in�nite product
±

n¥0

�
1� 1

qn

	
converges if the sequence

�±n
k�0

�
1� 1

qk

		
n¥0

converges

to a nonzero real number.
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Before the proof of Theorem D, we use a lemma stated in [CJLMT23] and which enables
us to reduce to the case where the sublinear map φ is non-decreasing (actually the statement
is stronger but we only need the monotonicity).

Lemma 6.3 (Lemma 2.12 in [CJLMT23]). Let φ : R� Ñ R� be a sublinear function. Then

there is a sublinear non-decreasing function φ̃ : R� Ñ R� such that φptq ¤ φ̃ptq for all t large
enough.

Proof of Theorem D. Let φ : R� Ñ R� be a sublinear map. If φ̃ is another sublinear map sat-
isfying φptq � Opφ̃ptqq, then φ̃-integrability implies φ-integrability. Therefore, by Lemma 6.3,
we assume without loss of generality that φ is non-decreasing.

Let pqnqn¥0 be a sequence of integers greater or equal to 2 and S the odometer on X �±
n¥0 t0, 1, . . . , qn � 1u. The Halmos-von Neumann theorem implies that S is conjugate to the

odometer on
±
n¥0 t0, 1, . . . , qin�1 . . . qin�1 � 1u for any increasing sequence pinqn¥0 satisfying

i0 � 0. Therefore, we can assume without loss of generality that the integers qn are su�ciently
large so that they satisfy the following properties:

1.
±
n¥0

�
1� 1

qn

	
converges17;

2. the series
¸ φp2hnq

hn
converges.

Let T be the odomutant built from S and the same families
�
σ
pnq
xn�1

	
0¤xn�1 qn�1

as in Lemma 6.2.

By this lemma and Theorem 2.14, S and T are not conjugate. Since S is conjugate to its inverse
S�1 (by the Halmos-von Neumann theorem), S and T are not �ip-conjugate.

It remains to quantify the cocycles, using Condition (C2) of Theorem 3.16. Let n ¥ 0
and xn�1 P t0, . . . , qn�1 � 1u, and i P t0, . . . , qn � 1u such that xn�1 � i mod qn. For every
x P t0, . . . , qn � 2uztqn � i� 1u, we have

�
σpnqxn�1

	�1
pσpnqxn�1

pxnq � 1q � xn � σpnqxn�1
p1� xnq � σpnqxn�1

pxnq � 1.

For xn � qn � 1, we consider the following bounds:�����σpnqxn�1

	�1
pσpnqxn�1

pxnq � 1q � xn

���� ¤ qn

and
���σpnqxn�1

p1� xnq � σpnqxn�1
pxnq

��� ¤ qn.

We �nally get
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¸
n¥0

1

hn�2

¸
0¤xn qn,

0¤xn�1 qn�1,

σ
pnq
xn�1

pxnq��qn�1

φ

�
hn

�
1�

�����σpnqxn�1

	�1
pσpnqxn�1

pxnq � 1q � xn

����




�
¸
n¥0

1

hn�2

¸
0¤xn¤qn�2,
0¤xn�1 qn�1
xn ��qn�i�1

φ

�
hn

�
1�

�����σpnqxn�1

	�1
pσpnqxn�1

pxnq � 1q � xn

����




¤
¸
n¥0

1

hn�2

¸
0¤xn�1 qn�1

ppqn � 2qφp2hnq � φphnp1� qnqqq

¤
¸
n¥0

φp2hnq
hn

�
¸
n¥0

φp2hn�1q
hn�1

  �8

and similarly

¸
n¥0

1

hn�2

¸
0¤xn¤qn�2,
0¤xn�1 qn�1

φ
�
hn

�
1�

���σpnqxn�1
p1� xnq � σpnqxn�1

pxnq
���		   8,

so S and T are φ-integrably orbit equivalent.

Remark 6.4. As Theorem C, the odomutants T in Theorem A and C can be built as home-
omorphisms, with a strong orbit equivalence between them and the odometers S. This is
clear for Theorem A since we may assume σpn,iqpqn � 1q � qn � 1 without loss of general-
ity. For Theorem D, we have to slightly modify the settings in Lemma 6.2 and its proof.

For example, we can de�ne σ
pnq
xn�1 as the permutation mapping 0 to 0, qn � 1 to qn � 1 and

i P t1, . . . , qn� 2u to 1� pi� 1� xn�1 mod qn� 2q. The set Y1 becomes the set of x P X such
that xn R t0, qn � 2, qn � 1u if n is even, xn R t0, 1, qn � 1u if n is odd, and vice versa for Y2.
Then the ideas remain the same.

A Some combinatorial properties

In this section, we �x an odomutant T built with uniformly c-multiple permutations, with
c � pcn, q̃nqn¥0 and qn � cnq̃n. We refer the reader to De�nition 3.3 for all the notations that
we will use, although not de�ned in this section (for instance the partitions P̃pℓq, the segments

I
pℓq
j , etc).

In the proof of Theorem C, for combinatorial purposes appearing in the computation of
topological entropy, we need to understand the dynamics of this odomutant with respect to
the associated partition P̃pℓq for some ℓ. Indeed, as explained in Example 2.3, computing
the topological entropy with respect to a clopen partition partly consists in counting words
given by the associated coding map. Recall that, given cn � 1 for every n ¥ 0, and an
odomutant built with c-multiple permutations, P̃pℓq is the partition Ppℓq in ℓ-cylinders of the
space X �±

n¥0 t0, . . . , qn � 1u, as introduced in Example 2.3.
As we can notice in the proofs of the following results, it is more convenient for the

computations that the permutations have common �xed points (here this is the point 0), as
in Section 3.5 when one wants to extend an odomutant to a homeomorphism. With this
assumption, at each step of the cutting-and-stacking construction, we can study the words
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produced by the points in the �rst level of the towers, and the recurrence relation describing
such a word at step n � 1 as a concatenation of words at step n (Lemmas A.1 and A.3).
Counting only these words gives a lower bound of the number of all the words produced by
the coding map, thus providing a lower bound of the topological entropy with respect to
the clopen partition that we consider. If this lower bound of htoppT q diverges to �8, then
we have built an odomutant of in�nite entropy. This is the strategy that we will apply in
the proof of Theorem C in the case α � �8, using a lower bound on the number of words
provided by Lemma A.4 when the odomutant satis�es some assumptions. Note that this
lemma is a reformulation of the main ideas of Boyle and Handelman for the proof of their
similar statement [BH94, Section 3]. In the case α   �8, we will need an exact formula on
the entropy. To this purpose, Lemma A.6 provides an upper bound of the number of all words
produced by a coding map, and thus a �ner upper bound of the entropy as we see in the proof
of Theorem C.

Lemma A.1. Let ℓ ¥ 1 and T be an odomutant built with uniformly c-multiple permutations

�xing 0.

1. For every n ¥ ℓ� 1, for every xn P t0, 1, . . . , qn � 1u, the set

trP̃pℓqshnpxq | x P r0, . . . , 0, xnsn�1u

is a singleton, denoted by tW pP̃pℓqqpnqxn u.
2. The following holds in the case n � ℓ� 1: the preimages of the map

xℓ�1 P t0, 1, . . . , qℓ�1 � 1u ÞÑW pP̃pℓqqpℓ�1q
xℓ�1

are I
pℓ�1q
0 , . . . , I

pℓ�1q
q̃ℓ�1

. Therefore this map is cℓ�1-to-1.

3. For every n   ℓ� 1, for every pxn, . . . , xℓ�1q P
±
n¤i¤ℓ�1 t0, 1, . . . , qi � 1u, the set

trP̃pℓqshnpxq | x P r0, . . . , 0, xn, . . . , xℓ�1sℓu

is a singleton, denoted by tW pP̃pℓqqpnqxn,...,xℓ�1u.
4. For every n   ℓ�1 and every pxn, . . . , xℓ�2q P

±
n¤i¤ℓ�2 t0, 1, . . . , qi � 1u, the preimages

of the map

xℓ�1 P t0, 1, . . . , qℓ�1 � 1u ÞÑW pP̃pℓqqpnqxn,...,xℓ�2,xℓ�1

are I
pℓ�1q
0 , . . . , I

pℓ�1q
q̃ℓ�1

. Therefore this map is cℓ�1-to-1.

Remark A.2.

� In the case of multiple permutations with cn � 1 for every n ¥ 0 (so q̃n � qn), we get

P̃pℓq � Ppℓq and Ipℓqj � tju for every ℓ ¥ 1 and every j P t0, . . . , qℓ � 1u, so the map

xℓ�1 P t0, 1, . . . , qℓ�1 � 1u ÞÑW pPpℓqqpℓ�1q
xℓ�1

is injective.
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� The �rst point of the above lemma remains true if we replace P̃pℓq by any partition
P re�ned by Ppℓq. Indeed, the result is true for the partition Ppℓq (it su�ces to con-
sider T as an odomutant built with multiple permutations and cn � 1). Moreover, the
word rP̃shnpxq is obtained from the word rP̃pℓqshnpxq by applying letters by letters the
projection which maps P P P̃pℓq to the atom of P containing P .

Proof of Lemma A.1. Let x P r0, . . . , 0, xnsn�1. We can write x � p0, . . . , 0loomoon
n times

, xn, xn�1, . . .q. All

the permutations �x 0, so for every i ¥ n� 1, we have

ψipxq � p0, . . . , 0loomoon
n times

, σpnqxn�1
pxnq, . . . , σpiqxi�1

pxiq, xi�1, xi�2, . . .q.

For k P t0, 1, . . . , hn � 1u, let pk0, k1, . . . , kn�1q be the n-tuple in
±

0¤i¤n�1 t0, 1, . . . , qi � 1u
satisfying

k � k0 � h1k1 � . . .� hn�1kn�1.

We then have

Skψipxq � pk0, k1, . . . , kn�1, σ
pnq
xn�1

pxnq, . . . , σpiqxi�1
pxiq, xi�1, xi�2, . . .q

so T kx is equal to pypkq0 , . . . , y
pkq
n�1, xn, xn�1, . . .q where ypkqi de�ned by

ypkqn � xn,

@ 0 ¤ i ¤ n� 1, y
pkq
i �

�
σ
piq

y
pkq
i�1


�1

pkiq.

Denote by jpk, ℓ � 1q the integer in t0, 1, . . . , q̃ℓ�1u satisfying y
pkq
ℓ�1 P I

pℓ�1q
jpk,ℓ�1q. For every

k P t0, 1, . . . , hn � 1u, pypkq0 , . . . , y
pkq
n q does not depend on xn�1, xn�2, . . . and only depends on

xn, so does the hn-tuple prypkq0 , . . . , y
pkq
ℓ�2, I

pℓ�1q
jpk,ℓ�1qsℓq0¤k¤hn�1 which is equal to rP̃pℓqshnpxq.

In the case n � ℓ�1, we have y
pkq
ℓ�1 � xn, so the value of the wordW pP̃pℓqqpnqxn only depends

on the interval I
pnq
j containing xn.

We similarly prove the last two items.

Lemma A.3. Let ℓ ¥ 1 and T be an odomutant built with uniformly c-multiple permutations

�xing 0. Let us recall the words W pP̃pℓqqpnqxn de�ned in Lemma A.1. Then, for every n ¥ ℓ� 1
and xn P t0, 1, . . . , qn � 1u, we have

W pP̃pℓqqpn�1q
xn�1

�W pP̃pℓqqpnq0 �W pP̃pℓqqpnq�
σ
pnq
xn�1

	�1
p1q

� . . . �W pP̃pℓqqpnq�
σ
pnq
xn�1

	�1
pqn�1q

.

Proof of Lemma A.3. Given n ¥ ℓ� 1, note that we have

t0, 1, . . . , hn�1 � 1u �
§

0¤i qn

�
t0, 1, . . . , hn � 1u � hni

	
.

Moreover if i is in t0, 1, . . . , qn � 1u, if xn�1 is in t0, 1, . . . , qn�1 � 1u, we have

T ihnpr0, . . . , 0, 0, xn�1sn�2q � r0, . . . , 0,
�
σpnqxn�1

	�1
piq, xn�1sn�2.

46



This implies that, for a �xed x P r0, . . . , 0, 0, xn�1sn�2, the element yi � T ihnpxq is in

r0, . . . , 0,
�
σ
pnq
xn�1

	�1
piqsn�1 and we get

rP̃pℓqsihn,pi�1qhn�1pxq � rP̃pℓqshnpT ihnpxqq � rP̃pℓqshnpyiq �W pP̃pℓqqpnq�
σ
pnq
xn�1

	�1
piq

by Lemma A.1. Finally the hn�1-word on x is the following concatenation:

W pP̃pℓqqpnqxn�1
� rP̃pℓqshn�1pxq
� rP̃pℓqs0,hn�1�1pxq
� rP̃pℓqs0,hn�1pxq � rP̃pℓqshn,2hn�1pxq � . . . � rP̃pℓqshnpqn�1�1q,hn�1�1pxq
�W pP̃pℓqqpnq�

σ
pnq
xn�1

	�1
p0q

�W pP̃pℓqqpnq�
σ
pnq
xn�1

	�1
p1q

� . . . �W pP̃pℓqqpnq�
σ
pnq
xn�1

	�1
pqn�1q

�W pP̃pℓqqpnq0 �W pP̃pℓqqpnq�
σ
pnq
xn�1

	�1
p1q

� . . . �W pP̃pℓqqpnq�
σ
pnq
xn�1

	�1
pqn�1q

and we are done.

Lemma A.4. Let T be an odomutant built with uniformly c-multiple permutations τ
pnq
j �xing

0. Let pκnqn¥1 be a sequence of positive integers and assume that for every n ¥ 0, the map

j P t0, 1, . . . , q̃n�1 � 1u ÞÑ pτ pnqj pIpnq0 q, . . . , τ pnqj pIpnqq̃n�1qq

is κn�1-to-1 (in particular, κn�1 divides q̃n�1)
18. Then, for all n ¥ ℓ ¥ 1, we have

���!W pP̃pℓqqpnqxn | 0 ¤ xn ¤ qn � 1
)��� ¥ q̃n±n

k�ℓ κ
hn{hk
k

.

Remark A.5. In the case of uniform permutations with pairwise di�erent permutations, the
lemma implies that ���!W pP̃pℓqqpnqxn | 0 ¤ xn ¤ qn � 1

)��� � qn

so W pP̃pℓqqpnqxn is an injective function of xn. This could also be deduced from Lemma A.3.
Therefore, odomutants can have more words in their language than odometer, and then their
entropy can be positive.

Proof of Lemma A.4. Let pP̃pℓqqℓ¥1 be the sequence of partitions associated to the construc-
tion of this odomutant with uniformly c-multiple permutations. Given n ¥ ℓ ¥ 1, we consider
the projection πn�1,ℓ : P̃pn�1q Ñ P̃pℓq which maps P P P̃pn�1q to the atom of P̃pℓq contain-
ing P . This projection induces a map on the set of words with letters in P̃pn� 1q, it consists
in projecting each entry on P̃pℓq.

18Let us go back to the intuition behind uniformly multiple permutations. Since we consider the partitions
P̃pℓq instead of Ppℓq, we cannot distinguish between the copies of a subcolumn that we stack to form each tower.

Therefore, given two permutations τ
pnq
j and τ

pnq

j1 , if pτ
pnq
j pI

pnq
0 q, . . . , τ

pnq
j pI

pnq
q̃n�1qq � pτ

pnq

j1 pI
pnq
0 q, . . . , τ

pnq

j1 pI
pnq
q̃n�1qq,

then we cannot distinguish between the permutations that they encode, although these permutations are
di�erent.
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Claim 1. Let x P r0, . . . , 0sn and k P t1, . . . , nu. For every i P t0, 1, . . . , hnhk � 1u and every

j P t0, 1, . . . , qk�1 � 1u, the point xpi,jq � T ihk�jhk�1x is in r0, . . . , 0sk�1. Moreover, pxpi,jqqk
does not depend on j and we have

pxpi,jqqk � σ
pkq

pxpi,jqqk�1
pikq and pxpi,jqqk�1 � σ

pk�1q

pxpi,jqqk
pjq

where ik �
Y
i
qk

]
.

Proof of the claim. Let us write ihk � ikhk�ik�1hk�1�. . .�in�1hn�1 with im P t0, . . . , qm�1u
for every m P tk, . . . , n� 1u. Given j ¥ n, we have

ψjpxq � p0, . . . , 0loomoon
n times

, σpnqxn�1
pxnq, . . .q

and
Sihk�jhk�1ψjpxq � p0, . . . , 0loomoon

k�1 times

, j, ik, . . . , in�1, σ
pnq
xn�1

pxnq, . . .q.

Hence we get xpi,jq � ψ�1
j Sihk�jhk�1ψjpxq for every j ¥ n, which implies

pxpi,jqqn � xn,

pxpi,jqqn�1 � σpn�1q
xn pin�1q,

pxpi,jqqn�2 � σ
pn�2q

pxpi,jqqn�1
pin�2q,

...

pxpi,jqqk � σ
pkq

pxpi,jqqk�1
pikq,

pxpi,jqqk�1 � σ
pk�1q

pxpi,jqqk
pjq,

so we are done. �claim

Claim 2. With the hypotheses of the lemma, for every k P tℓ, . . . , nu, the map

πk�1,k :
!
W pP̃pk � 1qqpnqxn | 0 ¤ xn ¤ qn � 1

)
Ñ

!
W pP̃pkqqpnqxn | 0 ¤ xn ¤ qn � 1

)

is at most κ
hn{hk
k -to-1.

Proof of the claim. Let x P r0, . . . , 0sn. We have rP̃pk � 1qshnpxq � W pP̃pk � 1qqpnqxn and

rP̃pkqshnpxq �W pP̃pkqqpnqxn . We �rst write these words as a concatenation of words of size hk�1,
namely the words rP̃pk�1qshk�1

pTmhk�1xq or rP̃pkqshk�1
pTmhk�1xq form P t0, 1, . . . , hn

hk�1
�1u.

Given m P t0, 1, 2, . . . , hn
hk�1

� 1u, the point Tmhk�1pxq is in r0, . . . , 0sk�1 by the last claim, so
we have

rP̃pk � 1qshk�1
pTmhk�1pxqq �W pP̃pk � 1qqpk�1q

pTmhk�1 pxqqk�1,pT
mhk�1 pxqqk

and
rP̃pkqshk�1

pTmhk�1pxqq �W pP̃pkqqpk�1q

pTmhk�1 pxqqk�1
.
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Secondly, we gather these words of length hk�1 in groups Mpk � 1qxn,i or Mpkqxn,i of qk�1

words:

Mpk � 1qxn,i � W pP̃pk � 1qqpk�1q

pxpi,0qqk�1,pxpi,0qqk
�W pP̃pk � 1qqpk�1q

pxpi,1qqk�1,pxpi,1qqk

� . . . �W pP̃pk � 1qqpk�1q

pxpi,qk�1�1qqk�1,px
pi,qk�1�1qqk

and

Mpkqxn,i �W pP̃pkqqpk�1q

pxpi,0qqk�1
�W pP̃pkqqpk�1q

pxpi,1qqk�1
� . . . �W pP̃pkqqpk�1q

pxpi,qk�1�1qqk�1

for all i P t0, 1, . . . , hnhk � 1u in such a way that we have

W pP̃pk � 1qqpnqxn �Mpk � 1qxn,0 �Mpk � 1qxn,1 � . . . �Mpk � 1qxn,hnhk �1

and
W pP̃pkqqpnqxn �Mpkqxn,0 �Mpkqxn,1 � . . . �Mpkqxn,hnhk �1.

To prove the lemma, it now remains to prove that, for every i P t0, 1, . . . , hnhk � 1u, the map

πk�1,k : tMpk � 1qxn,i | 0 ¤ xn ¤ qn � 1u Ñ tMpkqxn,i | 0 ¤ xn ¤ qn � 1u
is at most κk-to-1. Let us �x a wordMpkqxn,i with i P t0, 1, . . . , hnhk �1u and xn P t0, 1, . . . , qn�
1u. We write ik � ti{qku. By the last claim, the quantities pxpi,0qqk, . . . , pxpi,qk�1�1qqk are equal
and their common value is denoted by Xk, and we have

pxpiqk�1,jqqk�1 �
�
σ
pk�1q
Xk

	�1
pjq (7)

for every j P t0, 1, . . . , qk�1u. This �rst implies that

pxpi,0qqk�1, pxpi,1qqk�1, . . . , pxpi,qk�1�1qqk�1

are qk�1 pairwise di�erent elements of t0, 1, . . . , qk�1 � 1u. Since we know each subword

W pP̃pkqqpk�1q

pxpi,jqqk�1
of Mpkqxn,i, the third item of Lemma A.1 implies that we completely know

the sets I
pk�1q
0 , . . . , I

pk�1q
q̃k�1�1, so�

σ
pk�1q
Xk

pIpk�1q
0 q, . . . , σpk�1q

Xk
pIpk�1q
q̃k�1�1q

	
is also completely determined. By assumptions, Xk is in the disjoint union of κk sets of the

form I
pkq
j .

To conclude, we have proved that, if we have πk�1,kpMpk � 1qyn,iq � Mpkqxn,i for some
yn P t0, 1, . . . , qn � 1u, then Mpk � 1qyn,i is of the form

W pP̃pk � 1qqpk�1q

pxpi,0qqk�1,Xk
�W pP̃pk � 1qqpk�1q

pxpi,1qqk�1,Xk
� . . . �W pP̃pk � 1qqpk�1q

pxpi,qk�1�1qqk�1,Xk

with Xk in the disjoint union of κk sets of the form I
pkq
j , and which completely determines

pxpi,0qqk�1, pxpi,1qqk�1, . . . , pxpi,qk�1�1qqk�1 by Equality (7). But since two elements Xk and X
1
k

in the same I
pkq
j provide the same word Mpk� 1qyn,i (by the last item of Lemma A.1), we get

that there are at most κk possible values for the word Mpk � 1qyn,i. �claim
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By the last claim, the map

πn�1,ℓ :
!
W pP̃pn� 1qqpnqxn | 0 ¤ xn ¤ qn � 1

)
Ñ

!
W pP̃pℓqqpnqxn | 0 ¤ xn ¤ qn � 1

)

is at most

�
n¹
k�ℓ

κ
hn{hk
k

�
-to-1, so we have

���!W pP̃pℓqqpnqxn | 0 ¤ xn ¤ qn � 1
)��� ¥

���!W pP̃pn� 1qqpnqxn | 0 ¤ xn ¤ qn � 1
)���±n

k�ℓ κ
hn{hk
k

and the result follows from the second item of Lemma A.1.

Lemma A.6. Let pqnqn¥0 be a sequence of integers greater than or equal to 2 and satisfying

qn�1 ¤ pqn�2q!. Then there exist permutations σ
pnq
xn�1 , for n ¥ 0 and xn�1 P t0, . . . , qn�1�1u,

satisfying the following properties:

1. for every n ¥ 0, the maps σ
pnq
0 , σ

pnq
1 , . . . , σ

pnq
qn�1�1 are pairwise di�erent permutations of

the set t0, . . . , qn � 1u, �xing 0 and qn � 1;

2. the following bounds hold for every n ¥ ℓ ¥ 1:

qn ¤ NpPpℓqhn�1
0 q ¤ hn�1qnq

2
n�12

qn�1

Proof of Lemma A.6. Let us recall thatNpPpℓqhn�1
0 q is equal to the cardinality of trPpℓqshnpxq |

x P Xu. If the permutations σ
pnq
0 , σ

pnq
1 , . . . , σ

pnq
qn�1�1 are pairwise di�erent for every n ¥ 0,

then we get NpPpℓqhn�1
0 q ¥ qn for the underlying odomutant (see Remark A.5 following

Lemma A.4).
Given n ¥ 0, let in P t2, . . . , qn�2u be such that pin�1q!   qn�1 ¤ in! and let us choose any

family
�
σ
pnq
xn�1

	
0¤xn�1 qn�1

of pairwise di�erent permutations of the set t0, . . . , qn � 1u �xing
0, in� 1, in� 2, . . . , qn� 1. Given an integer ℓ ¥ 1, let us �nd an upper bound of NpPpℓqhn�1

0 q
for every n ¥ ℓ. Let n ¥ ℓ and x P X. There exists i P t0, 1, . . . , hn�1u such that y � T�ix is
in r0, . . . , 0, xnsn�1. Let us write z � T hnx. Thus rPpℓqshnpxq is the concatenation of a �nal

subword of W pPpℓqqpnqxn and an initial subword of W pPpℓqqpnqzn . Writing i � jhn�1 � r with
integers j P t0, . . . , qn�1 � 1u and r P t0, . . . , hn�1 � 1u, and using Lemma A.3, we have

rPpℓqshnpxq � w �W pPpℓqqpn�1q�
σ
pn�1q
xn

	�1
pj�1q

� . . . �W pPpℓqqpn�1q�
σ
pn�1q
xn

	�1
pqn�1�2q

�W pPpℓqqpn�1q
qn�1�1

�W pPpℓqqpn�1q
0 �W pPpℓqqpn�1q�

σ
pn�1q
zn

	�1
p1q

� . . . �W pPpℓqqpn�1q�
σ
pn�1q
zn

	�1
pj�1q

� w1

where w is a �nal subword ofW pPpℓqqpn�1q�
σ
pn�1q
xn

	�1
pjq

of length hn�1�r, and w1 an initial subword

of W pPpℓqqpn�1q�
σ
pn�1q
zn

	�1
pjq

of length r. Therefore, to every word of the form rPpℓqshnpxq for the
points x P X sharing the same integers xn, zn, j and r, we can associate the family��

σpn�1q
xn

	�1
pjq, . . . ,

�
σpn�1q
xn

	�1
pqn�1 � 2q,

�
σpn�1q
zn

	�1
p1q, . . . ,

�
σpn�1q
zn

	�1
pjq



.
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In the particular cases j � 0 and j � qn�1 � 1, this family is respectively equal to��
σpn�1q
xn

	�1
p1q, . . . ,

�
σpn�1q
xn

	�1
pqn�1 � 2q




and ��
σpn�1q
zn

	�1
p1q, . . . ,

�
σpn�1q
zn

	�1
pqn�1 � 2q



.

Moreover, this association is injective, as a consequence of Remark A.2 following Lemma A.1.
Thus we have

NpPpℓqhn�1
0 q ¤

hn�1�1¸
r�0

�
a
pnq
1 � b

pnq
qn�1�2 �

qn�1�2¸
j�1

a
pnq
j � b

pnq
j

�

¤ hn�1

�
a
pnq
1 � b

pnq
qn�1�2 �

qn�1�2¸
j�1

a
pnq
j � b

pnq
j

�

where a
pnq
j and b

pnq
j are respectively the cardinality of

"��
σpn�1q
xn

	�1
pjq, . . . ,

�
σpn�1q
xn

	�1
pqn�1 � 2q



| xn P t0, 1, . . . , qn � 1u

*

and "��
σpn�1q
xn

	�1
p1q, . . . ,

�
σpn�1q
xn

	�1
pjq



| xn P t0, 1, . . . , qn � 1u

*
.

We now �nd upper bounds of the quantities a
pnq
j and b

pnq
j , using the properties of the

permutations that we have chosen at the beginning of this proof. We have a
pnq
1 � qn, a

pnq
j ¤

in�1 � . . . � j if 1 ¤ j ¤ in�1 and a
pnq
j � 1 if in�1 � 1 ¤ j ¤ qn�1 � 2. We also have

b
pnq
j ¤ in�1 � . . .� pin�1 � j � 1q if 1 ¤ j ¤ in�1 � 1 and b

pnq
j � qn if in�1 ¤ j ¤ qn�1 � 2. We

then get

a
pnq
1 � b

pnq
qn�1�2 �

qn�1�2¸
j�1

a
pnq
j � b

pnq
j

¤ 2qn �
�
in�1�1¸
j�1

in�1!

pj � 1q!
in�1!

pin�1 � jq!

�
� qnin�1 �

�
� qn�1�2¸
j�in�1�1

qn

�


¤ qnqn�1 � i2n�1pin�1 � 1q!
in�1�1¸
j�1

�
in�1 � 1

j � 1




¤ qnqn�1 � q2n�1qn2
in�1�1

¤ qnq
2
n�12

in�1

¤ qnq
2
n�12

qn�1 ,

and we are done
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B Further comments on odomutants: Bratteli diagrams, strong

orbit equivalence

B.1 Bratteli diagrams, strong orbit equivalence

We introduce the most important de�nitions and results in the context of strong orbit equiv-
alence. For more details, we refer the reader to [HPS92] and [GPS95].

B.1.1 Bratteli diagrams

A Bratteli diagram is a graph B � pV,Eq with the set of vertices

V �
§
k¥0

Vk

and the set of edges
E �

§
k¥0

Ek,

where Vk and Ek are �nite, V0 � tvp0qu and the edges in Ek connect vertices in Vk to vertices
in Vk�1 (multiple edges between two vertices are allowed). If ek P Ek connects vk P Vk to
vk�1 P Vk�1, we write spekq � vk and rpekq � vk�1, this provides maps s : E Ñ V (source
map) satisfying spEkq � Vk and r : E Ñ V (range map) satisfying rpEkq � Vk�1. We assume
that

@v P V, s�1pvq �� H
and

@v P V zV0, r�1pvq �� H.
For k   ℓ, a path from vk P Vk to vℓ P Vℓ is a tuple pek, ek�1, . . . , eℓ�1q satisfying spekq � vk,
rpeiq � spei�1q for every i P tk, . . . , ℓ� 2u and rpeℓ�1q � vℓ.

An ordered Bratteli diagram is a Bratteli diagram together with a linear order in r�1pvq
for every v P V zV0, namely we consider a bijection

r�1pvq Ñ t0, 1, . . . , |r�1pvq| � 1u

for every v P V zV0. Then we consider Ek as a subset of Vk � Vk�1 � N: an edge ek P Ek is
written as pvk, vk�1, ρkq where vk � spekq, vk�1 � rpekq and ρk P t0, . . . , |r�1pekq| � 1u is the
rank of ek for the linear order in r�1pvk�1q, we write ρk � rkpekq.

Let us set

XB �

#
pekqk¥0 P

¹
k¥0

Ek | @k ¥ 0, rpekq � spek�1q
+
,

XB,min � tpekqk¥0 P XB | @k ¥ 0, rkpekq � 0u
and XB,max �

 pekqk¥0 P X | @k ¥ 0, rkpekq � |r�1prpekqq| � 1
(
.

As a subset of
±
k¥0Ek, XB is endowed with the induced product topology. XB is a compact

and totally disconnected metric space. By de�nition, the cylinders19 of XB are clopen sets
and form a basis of the topology.

19de�ned as in Section 2.5
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A Bratteli diagram is simple if there exists a subsequence pknq such that for every pair
of vertices in Vkn � Vkn�1 , there exits a path between them. If an ordered Bratteli diagram is
simple, then XB has no isolated points, so it is a Cantor set.

Given a Bratteli diagram B � pV,Eq, we can enumerate the vertices of each Vn:

Vn �
!
v
pnq
0 , . . . , v

pnq
|Vn|�1

)
;

and de�ne the incidence matrices

Mn �
�
m
pnq
i,j

	
0¤i¤|Vn�1|�1
0¤j¤|Vn|�1

where m
pnq
i,j is the number of edges of En connecting v

pnq
j to v

pn�1q
i .

B.1.2 Bratteli-Vershik systems

Given an ordered Bratteli diagram B, we de�ne a map TB : XBzXB,max Ñ XBzXB,min in the
following way.

Let x � pekqk¥0 P XBzXB,max and

N � minti ¥ 0 | rkpeiq   |r�1prpeiqq| � 1u.

Let fN be the edge in r�1prpeN qq satisfying rkpfN q � rkpeN q � 1 and pf0, . . . , fN�1q the
minimal path from vp0q to spfN q, namely this is the unique path satisfying rkpfiq � 0 for every
i P t0, . . . , N � 1u.20 Then we de�ne

TBx� pf1, . . . , fN , eN�1, eN�2, . . .q.

The map TB is called the Bratteli-Vershik system associated to the ordered Bratteli dia-
gram B.

An ordered and simple Bratteli diagram is properly ordered if XB,min and XB,max are
singletons. Given a properly ordered Bratteli diagram, we extend T to the whole set XB by
setting

TBpxmaxq� xmin

where XB,max � txmaxu and XB,min � txminu. In this case, we can check that TB is a Cantor
minimal homeomorphism.

For example, the Bratteli-Vershik system of the diagram in Figure 5 is topologically con-
jugate to the odometer on X �

±
n¥0 t0, 1, . . . , qn � 1u, the following map

Ψ: pxnqn¥0 P X ÞÑ
��
vp0q, vp1q, x0

	
,
�
vp1q, vp2q, x1

	
,
�
vp2q, vp3q, x2

	
, . . .

	
P XB

is a conjugation between them. As we explain in the next part, every Cantor minimal home-
omorphism can be described by a Bratteli diagram.

20We �nd this path in an inductive way: fN�1 is the unique edge satisfying rpfN�1q � spfN q and rkpfN�1q �
0, fN�2 is the unique edge satisfying rpfN�2q � spfN�1q and rkpfN�2q � 0, and so on.
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v
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v
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v
(2)
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v
(3)
1v
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0 v

(3)
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(3)
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M2 =


1 1
2 0
0 3
1 1



M1 =

(
1 2 0
1 1 3

)

M0 =

2
1
3

E0

Figure 4: Example of ordered Bratteli diagram B. The image of pe0, e1, e2, . . .q by TB is pf0, f1, e2, . . .q.

v(0)

v(1) v(2) v(3) v(4)

0

1

2

0

1

2

0

1

2

0

1

2

q0 − 1 q1 − 1 q2 − 1 q3 − 1

f2

e3f1f0

e0 e1

e2

M0 = ( q0 ) M1 = ( q1 ) M2 = ( q2 ) M3 = ( q3 )

Figure 5: An ordered Bratteli diagram describing the odometer on
±

n¥0 t0, . . . , qn � 1u. The image of
pe0, e1, e2, e3, . . .q by TB is pf0, f1, f2, e3, . . .q.

B.1.3 Cantor minimal homeomorphisms

The Bratteli-Vershik systems of properly ordered Brattali diagrams describe all the Cantor
minimal homeomorphisms.

Theorem (Herman, Putnam, Skau [HPS92]). If T is a Cantor minimal homeomorphism, then

there exists a properly ordered Bratteli diagram B such that the associated Bratteli-Vershik

system TB is topologically conjugate to T .

We brie�y describe how a Cantor minimal homeomorphism T : X Ñ X is encoded by a
properly ordered Bratteli diagram. All we have to �nd is an increasing sequence pPnqn¥0 of
partitions generating the topology, of the form

Pn � tT jpBn,iq | 0 ¤ i ¤ kn � 1, 0 ¤ j ¤ h
pnq
i � 1u

where kn, h
pnq
1 , . . . , h

pnq
kn

are positive integers, and the sequence pBnqn¥0 de�ned by

Bn �
§

0¤i¤kn�1

Bn,i,

is decreasing to a singleton tyu.
By "increasing sequence of partitions", we mean that Pn�1 is �ner than Pn, namely the

atoms of Pn are unions of atoms of Pn�1. The partition Pn is composed of kn towers and
given i P t0, . . . , kn � 1u, the tower

Tn,i � tBn,i, T pBn,iq, . . . , T h
pnq
i �1pBn,iqu

has height h
pnq
i .
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Without the assumption that the partitions have to generate the topology, the construction
only consists in considering in an inductive way a clopen subset Bn�1 of Bn, that we partition
in Bn,0, . . . , Bn,kn�1 according to the value of the �rst return time. The underlying sequence
of partitions does not necessarily generate the topology. For a generating sequence, we refer
the reader to Lemma 4.1 of in [HPS92] and Lemma 3.1 in [Put89] for more details.

The properly ordered Bratteli diagram B � pV,Eq is de�ned as follows. Assume that
P0 � X (so k0 � h1 � 1) and de�ne

Vn � tTn,i | 0 ¤ i ¤ kn � 1u .
Given n ¥ 1 and i P t0, . . . , kn � 1u, the tower Tn,i visits successively the towers

T
n�1,ℓ

pn,iq
1

, T
n�1,ℓ

pn,iq
2

, . . . , T
n�1,ℓ

pn,iq
rn,i

with integers ℓ
pn,iq
j P t0, . . . , kn�1 � 1u and rn,i ¥ 1. Then E is de�ned so that r�1pTn,iq has

cardinality rn,i and

r�1pTn,iq�
"�

T
n�1,ℓ

pn,iq
j�1

, Tn,i, j


| 0 ¤ j ¤ rn,i � 1

*
.

The underlying Bratteli diagram is properly ordered and the associated Bratteli-Vershik system
TB : XB Ñ XB is topologically conjugate to T : X Ñ X. Note that xmin P XB corresponds to
the point y P X.

To sum up, a Bratteli diagram encodes a cutting-and-stacking process de�ning a system
(see Figure 6).

T3,0

{
{

T2,0

T2,1

T1,0 T1,2

T1,1

T2,0 T2,1

{

{

}

{ }
}
}

T1,0

T1,1

T1,2

T1,1
T1,1

T1,1

T1,2

T3,1

{
{

T2,1

T2,1

T3,2

{
{
{

T2,0

T2,0

T2,1
1

2
3

T1,1
T1,0

0

1 0 0

1 2
0

2 3

1

0

T1,2

T2,0

0

0
1

1
0

12

T3,0 T3,2T3,1

T2,1

Figure 6: Example of towers Tn,i, and the associated Bratteli diagram.

B.1.4 Classi�cation up to strong orbit equivalence

Here we present a complete invariant of strong orbit equivalence, due to Giordano, Putnam
and Skau.

Recall the incidence matrices

Mn �
�
m
pnq
i,j

	
0¤i¤|Vn�1|�1
0¤j¤|Vn|�1
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given an enumeration of the vertices of each Vn. Then let us de�ne the group GpBq as the
following inductive limit

GpBq� limZ|V0| M0ÝÑ Z|V1| M1ÝÑ Z|V2| M2ÝÑ . . ..

With the usual ordering on each Z|Vn|, GpBq has a structure of ordered group, the unit order
is chosen as the image of 1 in Z � Z|V0|. The ordered group GpBq is called the dimension

group of B. We refer the reader to [GPS95] for more details.
For instance, for the dyadic odometer, the incidence matrices are all p1�1q-matrices equal

to p2q, and the dimension group is Z r1{2s.
Theorem B.1 (Giordano, Putnam, Skau [GPS95]). Let S and T be two Cantor minimal

homeomorphisms. The following assertions are equivalent:

1. S and T are strongly orbit equivalent;

2. If B (resp. B1) denotes a Bratteli diagram associated to S (resp. T ), then the dimension

groups GpBq and GpB1q with distinguished order unit are order isomorphic.

B.2 Bratteli diagrams of odomutants

Let X �
±
n¥0 t0, . . . , qn � 1u. Denoting by Ppnq the partition whose atoms are the n-

cylinders, with Pp0q � pXq, note that the sequence pPpnqqn¥0 generates the in�nite product
topology on X and Ppn� 1q is composed of qn towers of height hn, denoted by

Tn�1,i �
!
Bn�1,i, T pBn�1,iq, . . . , T hn�1pBn�1,iq

)
where Bn�1,i � r0, . . . , 0, isn�1, for every i P t0, . . . , qn � 1u (see Figure 2). The atoms of
Tn�1,i are the cylinders of the form rx0, . . . , xn�1, isn�1 with xk P t0, . . . , qk � 1u for every
k P t0, . . . , n� 1u.

Given n ¥ 1 and i P t0, . . . , qn � 1u, the tower Tn�1,i visits the n-th towers with the
following order:

T
n,
�
σ
pn�1q
i

	�1
p0q
, T
n,
�
σ
pn�1q
i

	�1
p1q
, . . . , T

n,
�
σ
pn�1q
i

	�1
pqn�1q

.

According to Section B.1.3, we get the Bratteli diagram B of T illustrated in Figure 7.
The following map

Ψ: pxnqn¥0 P X ÞÑ
��
vp0q, vp1qx0 , 0

	
,
�
vp1qx0 , v

p2q
x1 , σ

p0q
x1 px0q

	
,
�
vp2qx1 , v

p3q
x2 , σ

p1q
x2 px1q

	
, . . .

	
P XB

is a conjugation between T and the Bratteli-Vershik system TB, it satis�es

Ψpψ�1pX�
8qq � XBzXB,max

and Ψpψ�1pX�
8qq � XBzXB,min.

In the case the permutations satisfy σ
pnq
i p0q � 0, σ

pnq
i pqn � 1q � qn � 1 for every n ¥ 0, the

Bratteli diagram is proprely ordered and we have

XB,max �
 
Ψpx�q(

and XB,min �
 
Ψpx�q( .
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v
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(3)
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Figure 7: An ordered Bratteli diagram describing the odomutant built from the odometer on±
n¥0 t0, . . . , qn � 1u and families of permutations

�
σ
pnq
i

	
0¤i qn�1

for n ¥ 0.

B.3 Comparisons between Boyle and Handelman's system and our odomu-

tants.

As mentioned in the introduction, Boyle and Handelman have shown the following result.

Theorem (Boyle, Handelman [BH94]). Let S be the dyadic odomete. Let α be either a positive

real number or �8. Then there exists a Cantor minimal homeomorphism T such that:

1. S and T are strongly orbit equivalent;

2. htoppT q � α.

In their proof, they build a Bratteli diagram BBH (see Figure 8) similar to the diagram in

Figure 7, the only di�erence is that for every k ¥ 1, for every v
pkq
i P Vk, vpk�1q

j P Vk�1, with
0 ¤ i   qk�1 and 0 ¤ j ¤ qk � 1, there are nk edges connecting these vertices. Then the ideas

remain almost the same. Every vertex v
pk�1q
j P Vk�1 provides a permutation σ

pk�2q
j on the

nkqk�1 edges of range v
pk�1q
j , satisfying

σ
pk�2q
j p0q � 0

and σ
pk�2q
j pnkqk�1 � 1q � nkqk�1 � 1,

so that the diagram is properly ordered and the associated Bratteli-Vershik system T � TBBH

can be extended to a homeomorphism on the Cantor set. The permutations are chosen in
order to get htoppT q � α (we refer the reader to their proof for more details, note that their
proof in the case α � �8 has been here entirely reformulated in our formalism).

It turns out that their Bratteli diagram is a diagram for an odomutant. Let us recall the
following facts.
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Figure 8: Bratteli diagram built by Boyle and Handelman in the proof of their Theorem 2.8 [BH94], with
n1 � 2, n2 � 3.

� In a Bratteli diagram, for some �xed vertex v
pk�1q
j P Vk�1, with 0 ¤ j ¤ qk � 1, the

set of edges r�1pvpk�1q
j q, with its linear ordering, encodes the stacking of subtowers of

Tk,0, . . . , Tk,qk�1�1 to build the tower Tk�1,j (see Figure 6).

� In the cutting-and-stacking construction of an odomutant described in Figure 2, every
tower Tk,i, with 0 ¤ i   qk�1, is uniformly cut in qk�1 subtowers pTk,ipℓqq0¤ℓ qk�1

and

we build every tower Tk�1,j , with 0 ¤ j   qk, by choosing only one subtower in each
Tk,0, . . . , Tk,qk�1�1 and stacking them.

The Bratteli diagram BBH of Boyle and Handelman describes the following cutting-and-
stacking construction: every tower Tk,i is uniformly cut in nkqk�1 subtowers pTk,ipℓqq0¤ℓ¤nkqk�1�1

and we build every tower Tk�1,j by choosing exactly nk subtowers in each Tk,0, . . . , Tk,qk�1�1

and stacking them.
As explained in Section 3.2, to understand why this is equivalent to the construction of

an odomutant, it su�ces to cut each k-th tower Tk,i in nk (sub)towers Tk,pi,0q, . . . , Tk,pi,nk�1q,
in such a manner that for every pk � 1q-th tower Tk�1,j , each tower Tk,pi,mq contains only one
of the nk subtowers Tk,ipℓq which form Tk�1,j . We then replace the former k-th towers Tk,i,
with 0 ¤ i   qk�1, by the new ones Tk,pi,mq, with 0 ¤ i   qk�1 and 0 ¤ m ¤ nk � 1, and we
recover the cutting-and-stacking process of an odomutant described above (with new integers
nk equal to 1). In other words, each vertex in Vk is split in nk copies, and we get the Bratteli
diagram B1

BH illustrated in Figure 9.
An in�nite path of XBBH

can be uniquely written as�
pvpkqik

, v
pk�1q
ik�1

,
�
σ
pk�1q
ik�1

	�1
pnkik �mkqq



k¥1
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Figure 9: To get B1BH � pV 1, E1q from the Bratteli diagram BBH of Boyle and Handelman (see Figure 8), we
successively duplicate the vertices and the edges.
In BBH, the integer n1 is equal to 2 (from each vertex in V1 to each one in V2, there are two edges), so each

vertex v
p1q
i (with 0 ¤ i   q0) is split in two new vertices v

p1q
pi,0q and v

p1q
pi,1q, each one being associated to one of

the two edges in r�1pv
p2q
j q (for every 0 ¤ j   q1). For every 0 ¤ m1 ¤ n1 � 1, there is only one edge between

vp0q to v
p1q
i,m1

(this edge can be considered as a copy of the edge from vp0q to the former vertex v
p1q
i ).

The integer n2 is equal to 3 (from each vertex in V2 to each one in V3, there are three edges), so each vertex

v
p2q
j (with 0 ¤ j   q1) is split in three new vertices v

p2q
pj,0q, v

p2q
pj,1q and v

p2q
pj,2q, each one being associated to one of

the three edges in r�1pv
p3q
k q (for every 0 ¤ k   q2). For every 0 ¤ m2 ¤ n2 � 1, we de�ne the edges of range

v
p2q
j,m2

as copies of the edges of range the former vertex v
p2q
j . A thicker edge corresponds to one copy. We do

not indicate the rank of the other edges (the thinner ones) for clarity.
Then we apply the same algorithm to de�ne the new vertices and edges in E12, V

1
3 , E

1
3, V

1
4 , . . ..

with 0 ¤ ik   qk�1 and 0 ¤ mk ¤ nk � 1 (we omit the �rst edge pvp0q, vp1qi1 , 0q). With the
notations of Figure 9, the map�

pvpkqik
, v

pk�1q
ik�1

,
�
σ
pk�1q
ik�1

	�1
pnkik �mkqq



k¥1

P XBBH

ÞÑ
�
pvpkqpik,mkq

, v
pk�1q
pik�1,mk�1q

,
�
σ
pk�1q
ik�1

	�1
pnkik �mkqq



k¥1

P XB1BH

is a conjugation between the Bratteli-Vershik systems TBBH
and TB1BH

.

B.4 Comparisons between Boyle and Handelman's proof and our tech-

niques.

Unlike Boyle and Handelman, we prove the case α   �8 of Theorem C with a cutting-and-
stacking process where all new towers contain only one copy of each former tower. This is
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naturally the construction encoded by an odomutant endowed with the sequence pPpℓqqℓ¥1 of
partitions in ℓ-cylinders (see Figure 2). In order to get the case α � �8, the main trick is
to understand that a less restrictive cutting-and-stacking process, namely where every former
tower may appear many times in the new ones, is encoded by an odomutant equipped with
another sequence of partitions. Here the partitions are the ones associated to a description of
this odomutant by multiple permutations, namely the partitions P̃pℓq (see De�nition 3.3). A
�rst way to understand why this is relevant is to notice that with these partitions, we cannot
distinguish between towers of the same step, as if they were the copies of the same former tower
which appear in a new one (see Figure 3). Another remark is that Boyle and Handelman use
the partitions in cylinders in the Cantor space XBBH

on which their system TBBH
is de�ned.

Therefore, if we want to reformulate their proof in our formalism and with the odomutant
conjugate to TBBH

, we have to consider the image of these partitions by the conjugation that
we explicit above. It turns out that we get the partitions P̃pℓq.

To prove that the system TBBH
is strongly orbit equivalent to the dyadic odometer S, Boyle

and Handelman use the Giordano-Putnam-Skau theorem and the fact that the dimension group
of TBBH

is Zr1{2s. In our proof of Theorem C, the orbit equivalence is explicit and this enables
us to directly show that the cocycles have at most one point of discontinuity. This also enables
us to quantify the integrability of this orbit equivalence.

C Equivalence between de�nitions of loose Bernoullicity in the

zero-entropy case

To our knowledge, justi�cations for the equivalence between two de�nitions of loose Bernoul-
licity in the zero-entropy case (see Theorem 2.8) is missing is the literature. Here we provide
a proof. Let us �rst recall these de�nitions, that we already wrote in Section 2.4.

De�nition C.1. Let T P AutpX,µq and P be a partition of X.

� pT,Pq is loosely Bernoulli, and we write T is LB, if for every ε ¡ 0, for every su�ciently
large integer N and for each M ¡ 0, there exists a collection G of "good" atoms in P0

�M

whose union has measure greater than or equal to 1� ε, and so that for each pair A,B
of atoms in G, the following holds: there is a probability measure nA,B on PN � PN

satisfying

(I) nA,Bptwu � PN q � µAptrPs1,N p.q � wuq for every w P PN ;

(II) nA,BpPN � tw1uq � µBptrPs1,N p.q � w1uq for every w1 P PN ;

(III) nA,Bptpw,w1q P PN � PN | fN pw,w1q ¡ εuq   ε.

� We say that pT,Pq is LB0 if for every ε ¡ 0 and for every su�ciently large integer N ,
there exists a collection H of "good" atoms in PN

1 whose union has measure greater than
or equal to 1� ε and so that we have fN pw,w1q ¤ ε for every w,w1 P rPs1,N pHq.

Theorem C.2. Let T P AutpX,µq and P be a partition of X. If hµpT,Pq � 0, then pT,Pq is
LB if and only if it is LB0.

This theorem relies on the following key lemma which crucially uses the assumption on the
entropy. Note that, when considering a set Q of subsets of X, for instance a set of atoms of a
partition, µpQq will abusively denote the measure of

�
APQA.
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Lemma C.3. Let T P AutpX,µq and P be a partition of X, such that hµpT,Pq � 0. Let

α ¡ 0 and N be a positive integer. Then there exists an integer M0 ¥ 0 such that the following

holds for every M ¥M0: there exists a collection pQCqCPPN
1

of disjoints subsets of P0
�M such

that

� for every C P PN
1 , for every A P QC , we have µApCq ¥ 1�?

α;

� for every C P PN
1 , we have µ pQCq ¥ p1� 2

?
αqµpCq.

Note that the second item implies µ
��

CPPN
1
QC

	
¥ 1� 2

?
α.

Proof of Lemma C.3. By [Dow11, Fact 2.3.12], the assumption hµpT,Pq � 0 implies that PN
1

is P0
�8-mesurable, where

P0
�8 � σ

�
P0
�M ,M ¥ 0

�
,

namely P0
�8 is the σ-algebra generated by the increasing sequence of algebras

�
σpP0

�M q
�
M¥0

.

Then the following holds for every C P PN
1 : for every η ¡ 0, there exists BC P �M¥0 σpP0

�M q
such that µpC∆BCq ¤ η. Applied to η � αµpCq, this fact provides an integer M0 ¥ 0 such
that every atom C P PN

1 is closed to some BC P σpP0
�M0

q, namely µpC∆BCq ¤ αµpCq. Let
us �x an integer M ¥M0, and notice that BC is also in σpP0

�M q.
For every C P PN

1 , let us set

QC �
 
A P P0

�M | A � BC , µApCq ¡ min p1�?
α, 1{2q( .

Given two distinct atoms C,C 1 P PN
1 , the sets QC and QC1 are disjoint, otherwise we would

have an atom A P P0
�M lying in QC and QC1 and such that the following occurs:

µpAq ¥ µpAX Cq � µpAX C 1q � �
µApCq � µApC 1q�µpAq ¡ µpAq,

a contradiction.
Given C P PN

1 , it remains to prove µpQCq ¥ p1� 2
?
αqµpCq. Let us write

Q�
C � tA P P0

�M | A � BCuzQC .

On the one hand, we have

µpBC X Cq �
¸

APQC

µpAX Cq �
¸

APQ�C

µpAX Cq

¤ µpQCq � p1�?
αqµpQ�

Cq
� µpQCq � p1�?

αqpµpBCq � µpQCqq
� p1�?

αqµpBCq �
?
αµpQCq

¤ p1�?
αqp1� αqµpCq � ?

αµpQCq.
where the last inequality comes from

µpBCq ¤ µpBC∆Cq � µpCq ¤ p1� αqµpCq
On the other hand, we have

µpBC X Cq ¥ µpCq � µpBC∆Cq ¥ p1� αqµpCq.
Combining all these inequalities, we get

µpQCq ¥ 1?
α

�
1� α� p1�?

αqp1� αq�µpCq � p1�?
αq2µpCq ¥ p1� 2

?
αqµpCq,

as wanted.

61



Proof of Theorem C.2. Assume that pT,Pq is LB. Let us �x ε Ps0, 1r and a su�ciently large
integer N as in the de�nition of LB. With α ¡ 0 small enough so that

p1�?
αqp1�?

α� εq ¥ 1� 2ε

and 1� 2
?
α ¥ ε,

we apply Lemma C.3 to get M and pQCqCPPN
1

as described in the statement. By de�nition

of LB associated to the quantities ε, N and M , we get G � P0
�M covering at least 1 � ε of

the space, and a family pnA,BqA,BPG of probabilities on PN � PN satisfying items (I), (II)
and (III). Let us de�ne

H �
 
C P PN

1 | G XQC �� H(
.

We �rst have

µpHq �
¸
CPH

µpCq ¥
¸
CPH

¸
APQCXG

µpC XAq ¥ p1�?
αq

¸
CPH

¸
APQCXG

µpAq

� p1�?
αqµ

�
�G X

¤
CPPN

1

QC

�


¥ p1�?
αqp1�?

α� εq
¥ 1� 2ε.

Secondly, let us consider C,C 1 P H and let us prove that w � rPs1,N pCq and w1 � rPs1,N pC 1q
are fN -close. By de�nition, we can pick A P G X QC and B P G X QC1 , and using items (I)
and (II) we have

nA,Bptwu � PN q ¥ µApCq ¥ 1�?
α

and nA,BpPN � tw1uq ¥ µApC 1q ¥ 1�?
α.

This implies
nA,Bptpw,w1quq ¥ 1� 2

?
α ¥ ε,

so fN pw,w1q ¤ ε by item (III). We have proved that pT,Pq satis�es LB0 for 2ε.
Let us now assume that pT,Pq is LB0, we �x ε ¡ 0, a su�ciently large integer N ¡ 0 and

an associated H � PN
1 as in the de�nition of LB0. With α ¡ 0 small enough so that

p1�?
αq2 ¥ 1� ε

and p1� 2
?
αqp1� εq ¥ 1� 2ε,

we apply Lemma C.3 to get M0 and for every M ¥M0, an associated collection pQCqCPPN
1
as

described in the statement. Let us �x M ¥M0 and let us consider

G �
¤
CPH

QC

and for every A,B P G, the probability nA,B on PN � PN de�ned by

nA,Bptpw,w1quq � µAptrPs1,N p.q � wuqµBptrPs1,N p.q � w1uq,
they automatically satisfy items (I) and (II). Given C,C 1 P H, A P QC and B P QC1 , and
w � rPs1,N pCq and w1 � rPs1,N pC 1q, we have

nA,Bptpw,w1quq ¥ µApCqµBpC 1q ¥ p1�?
αq2 ¥ 1� ε,
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and since fN pw,w1q ¤ ε, we get item (III). Finally, we have

µpGq �
¸
CPH

µpQCq ¥ p1� 2
?
αq

¸
CPH

µpCq � p1� 2
?
αqµpHq ¥ p1� 2

?
αqp1� εq ¥ 1� 2ε.

We have proved that pT,Pq satis�es LB for 2ε, N large enough and M ¥ M0. By [Fel76,
Corollary 2], we can replace "for each M ¡ 0" by "for every su�ciently large M ¡ 0" in the
de�nition of LB, so we are done.
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